-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvsummit24gfft.tex
301 lines (257 loc) · 10.7 KB
/
vsummit24gfft.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
\documentclass[shadesubsections,compress,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
\usepackage{tikz,circuitikz}
\usetikzlibrary{shapes, positioning}
\usenavigationsymbolstemplate{}
\usepackage{pgfplots}
\usepackage[absolute,overlay]{textpos}
\usepackage{amsthm,amsfonts}
%\usepackage[T1]{fontenc}
% \usepackage{fullpage}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
\usepackage[export]{adjustbox}
\everymath{\color{purple}}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\minus}{\scalebox{0.5}[1.0]{\( - \)}}
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{{\mathbb F}}}
\renewcommand{\P}{\ensuremath{{\mathbb P}}}
\newcommand{\Z}{\ensuremath{{\mathbb Z}}\xspace}
\newcommand{\Fclosure}{\ensuremath{{\overline{\mathbb{F}}}_p}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\bin}{\ensuremath{\set{0,1}}}
\newcommand{\cube}{\ensuremath{\bin^n}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
% \newcommand{\kzg}[1]{\ensuremath{\enc{#1(x)}}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\kzg}[1]{\cm(#1)}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
% \newcommand{\endoss}{\ensuremath{\mathrm{END}_E}}
\newcommand{\hl}[1]{\textbf{\textit{#1}}}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
\newcommand{\spac}{\\ \vspace{0.2in} \noindent}
\newcommand{\polylog}{\ensuremath{\mathsf{polylog}}\xspace}
% \renewcommand{\bf}{\begin{frame}}
% \newcommand{\ef}{\end{frame}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\newcommand{\nl}{\\ \pause \vspace{0.2in}}
\newcommand{\nlnp}{\\ \vspace{0.2in}}
\newcommand{\stitle}[1]{{\large{\textcolor{purple}{\emph{#1}}}}}
\DeclareMathAlphabet{\mathpgoth}{OT1}{pgoth}{m}{n}
\newcommand{\cq}{\mathpgoth{cq} }
\newcommand{\cqstar}{\ensuremath{\mathpgoth{cq^{\mathbf{*}} }}\xspace}
\newcommand{\flookup}{\ensuremath{\mathsf{\mathpgoth{Flookup}}}\xspace}
\newcommand{\baloo}{\ensuremath{\mathrm{ba}\mathit{loo}}\xspace}
% \newcommand{\caulkp}{\ensuremath{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}\xspace}
\newcommand{\caulk}{\ensuremath{\mathsf{Caulk}}\xspace}
\newcommand{\plookup}{\ensuremath{\mathpgoth{plookup}}\xspace}
\newcommand{\srs}{\ensuremath{\mathsf{srs}}}
\newcommand{\tablegroup}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\V}{\ensuremath{\mathbf{V} }\xspace}
% \newcommand{\caulk}{{\mathsf{Caulk}}}
% \newcommand{\caulkp}{{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}}
\newcommand{\bigspace}{\ensuremath{\mathbb{V}}}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\title{\large{GFFT on the projective line}} % Enter your title between curly braces
\author{\small{Ariel Gabizon}\\ % Enter your name between curly braces
\tt{\footnotesize{Aztec Labs} } } % Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
% \begin{frame}
% \large{plonk is a protocol to make short proofs about circuit satisfiability.}
% \begin{figure}
% \includegraphics[width=260pt]{circuit.png}
% \end{figure}
% \end{frame}
\begin{frame}
\frametitle{FFT Reminder}
$S=\set{g,g^2,\ldots,g^{n}=1},n=2^k$\nl
Want to evaluate $f(X)\in \F[X]$ of deg $<n$ on $S$.\pause
Use recursive formula
\[f(X)=f_e(X^2)+X\cdot f_o(X^2)\]
Since the map $x\to x^2$ is 2-to-1 on $S$, this reduces $n$ evals of $f$ to $n/2$ evals of two deg $n/2$ polys.\nl
Requires $n|p-1$, where $p=|\F|$.
Can we do something when $n|(p+1)$ instead??
% \begin{itemize}
% \item
% \end{itemize}
\end{frame}
\begin{frame}
\frametitle{GFFT idea: All you need is cyclic operation}
$S=\set{g,g^2,\ldots,g^{n}=1},n=2^k$\\ \pause
The map $\sigma(x)=g\cdot x$ goes over $S$ as a cycle.\nl
\begin{itemize}
\item Let $\tau = \sigma^{n/2}$. So $\tau(x)=-x$, and $\tau^2(x)=x$.\pause
\item $S$ splits into disjoint pairs $(a,\tau(a))$.\pause
\item Let $N(X)\defeq X \cdot \tau(X)$.\\ \pause 2-1 on $S$: $N(a)=a \cdot \tau(a) = N(\tau(a))$.\nl %\\
% $N$ is our 2-to-1 map.\nl
\textit{Can we find a set of size $p+1$ with a cyclical $\sigma$?}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The Projective line and fractional transformations}
% How to get set $\P$ of size $2^k$?
Look at \emph{projective line} $\P\defeq \F\cup\infty$\nl
Take fractional map:
$\sigma(x)= \frac{1}{ax+b}$
Define: $\sigma(-b/a)=\infty,\sigma(\infty)=0$.\nl
\textbf{claim:}For the right choice of $a,b$, $\sigma$ makes a cycle over all of \P.
\end{frame}
\begin{frame}
\frametitle{Detour: The projective line as a circle in the plane}
% \textbf{As a circle in the plane:}\nlnp
\begin{circuitikz}
% Draw the real line
\draw[thick] (-2,0) -- (2,0);
\node at (2.5,0) {};
% Draw the larger circle a bit lower above the real line
\draw (0,1.5) node[circle,draw,minimum size=1.5cm] (circle) {};
\node at (0,1.5) {};
\filldraw (circle.north) circle (2pt) node[above] {$\infty$};
% Draw a line from the top of the circle to somewhere on the real line
\draw (circle.north) -- (1,0);
% Add little black dots at the connection points
\filldraw (circle.north) circle (2pt);
\filldraw (1,0) circle (2pt);
% Connect the circle to the real line with a dashed line
\draw[dashed] (0,0) -- (circle);
% Calculate the intersection point of the line and the circle
\coordinate (intersection) at ($(circle) + (-41:0.75cm)$);
\filldraw (intersection) circle (2pt);
\end{circuitikz}
\vspace{0.3in}\nlnp
\textit{See Circle STARK paper [HLP24] for this approach}
\end{frame}
\begin{frame}
\textit{Let's try to proceed as before:}\\
The map $\sigma(x)=\frac{1}{ax+b}$ goes over $\P$ as a cycle.\pause%\nl
\begin{itemize}
\item Let $\tau = \sigma^{n/2}$. %So $\tau(x)=-x$, and $\tau^2(x)=x$.\pause
\item $\P$ splits into disjoint pairs $(a,\tau(a))$.\pause
\item Let $N(X)\defeq X \cdot \tau(X)$.\\ \pause 2-1 on $\P$: $N(a)=?$\nl
\textit{$\P$ is not a group, so $N(a)$ is not defined!}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The point $a$ as a ``place''}
\textbf{Let $K=\F(X)$.}\nl
Given $a\in \F$, let $P_a=\{r(X)\in K| r(a)=0 \}$.\nl
$P_a$ is called a \emph{place} of $K$.\nl
\textit{($P_a$ is the unique maximal ideal of the subring of elements $r$ with $r(a)\neq \infty$.)}
\end{frame}
\begin{frame}
\frametitle{Evaluating at $a$ with $P_a$}
% \textbf{example:}
Fix poly $f=\sum_{i=0}^n b_i X^i$.\\ \pause Write
$f(X) = c + \sum_{i=1}^n c_i(X-a)^i$ .\nl
Let $g\defeq \sum_{i=1}^n c_i(X-a)^i$.\nl
So $f(a)=c$ and $g(X)\in P_a$.\nl
I.e. - taking $f$ mod $P_a$ gives $f(a)$.
\end{frame}
\begin{frame}
\frametitle{The infinity point in the algebraic representation}
There is \emph{one more} place of degree one in $K$:
$P_{\infty}=\set{f(X)/g(X)|deg(f)< deg(g)}$. \nl
$P_{\infty}=$ ``the set of functions that are zero at infinity''
\end{frame}
\begin{frame}
\textit{To exemplify ideas focus from now on map $\tau(x)=\minus x$ from regular FFT.}
\end{frame}
\begin{frame}
Defining $\tau$ on places:\pause
\begin{enumerate}
\item Define $\tau$ as operation on $K$: $\tau(r(X)) \defeq r(\minus X)$.\pause
\item Define $\tau$ on place $P_a$ element-wise: $\tau(P_a)\defeq \sett{\tau(r)}{ r\in P_a}$\\ \pause
$ =\set{ {r(\minus X)}| r(a)=0} = P_{\minus a}$
\end{enumerate}
%
\end{frame}
\begin{frame}
\frametitle{Galois subfields}
% \begin{enumerate}
% \item
Look at the \emph{subfield} of $K$ fixed by $\tau$ - $\set{r\in K|\tau(r)=r}$. \nl
This is exactly $\F(X^2)$.\\
e.g. $\tau(X^2)=(-X)^2 = X^2$.
% \item Recursively evaluate relevant polys on places of subfield, and then expand into places of $K$ they split into.
% \end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Places ``splitting'' in extensions:}
Let $b=a^2$. Look at place $P'_b$ of $\F(X^2)$. \\ \pause
$P'_b=\set{r(X^2)|r(b)=0}$.\nl
Poly $f\in P'_b$ looks like:\\
$f=\sum_{i=1}^n c_i(X^2-b)^i$ \\ \pause
$=\sum_{i=1}^n c_i(X+a)^i(X-a)^i$.\nl
So $P'_b\subset P_a$ and $P'_b\subset P_{\minus a}$.\nl
We say $P'_b$ \emph{splits} in $K$ into $P_a$ and $P_{\minus a}$.
\end{frame}
\begin{frame}
\frametitle{Tying it together}
\textit{Let's try to define $N$ again:}\\
$\P \defeq \set{P_a}_{a\in \F} \cup P_{\infty}$.\\ \pause
The map $\sigma(x)=\frac{1}{ax+b}$ goes over $\P$ as a cycle.
\begin{itemize}
\item Let $\tau = \sigma^{n/2}$. %So $\tau(x)=-x$, and $\tau^2(x)=x$.\pause
\item $\P$ splits into disjoint pairs $(P,\tau(P))$.\pause
\item
Let $K'$ be the subfield of $K$ fixed by $\tau$. Define $N(P)$ to be the place of $K'$ splitting in $K$ into $P,\tau(P)$.
\end{itemize}
\end{frame}
\begin{frame}
For more details see:
\begin{figure}
\includegraphics[width=260pt]{lx23.png}
\end{figure}
\textit{For more elementary approach with better final constants see Circle STARK[HLP24]}
\end{frame}
\end{document}
% \begin{frame}
% \frametitle{The places of $K=\F(X)$: }
% Choose $a\in F$. Write $r\in K$ as\\
% $r(X)=(X-a)^{v_a} \frac{f(X)}{g(X)}$, $f,g\in \F[X]; f(a),g(a)\neq 0$.\nl
%
% $v$ is the \emph{valuation of $r$ at $a$}.
% Take $R_a\defeq \{r\in K| v_a(r)\geq 0 \}$.\nl
% $R_a$ is a place of $K$.
% \end{frame}
% \begin{frame}
% The unique maximal ideal of $R_a$ is $I_a=\set{(X-a)\cdot r|r\in R_a}$\nl
% \textit{Cool thing: $R_a/I_a=\F$. And we can evaluate $r\in R_a$ at $a$ by taking $r\;\mod\; I_a$}\nl
% This gives the same result as ``normal'' evaluation!
%
% \end{frame}
% \begin{frame}
% \frametitle{Regular FFT via GFFT}
% \begin{enumerate}
% \item Applying the map $\tau(x)=-x$.
% \item Applying 2-1 map $x\to x^2$.\nl
% \end{enumerate}
% \emph{How do these operations look in the framework of places?}
% \end{frame}