-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEWCE.R
357 lines (254 loc) · 15.1 KB
/
EWCE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#install.packages("devtools")
#library(devtools)
# install_github("neurogenomics/EWCE")
###################################################################################
# for examples see the vignette
# https://nathanskene.github.io/EWCE/articles/EWCE.html#application-to-transcriptomic-data-1
###################################################################################
library(Seurat)
library(devtools)
library(EWCE)
library(ggplot2)
library(cowplot)
library(limma)
library(readxl)
# the main function we require is
# help(c)
# it takes as input
# exp
# annotLevels
# generate exp from my scRNAseq dataset, only EC, remove INTERMEDIATE cluster
# Numerical matrix with row for each gene and column for each cell.
# Row names are gene symbols.
# Column names are cell IDs which can be cross referenced against the annot data frame.
integrated_3TIP <-readRDS("/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/Bonanomi_1287_scRNA_injury/7_bioinfo/EC_subset/3TIP/integrated_EC_Bonanomi_newnames.RDS")
integrated_3TIP <- subset( integrated_3TIP, idents = c("INTERMEDIATE"), invert = TRUE)
DefaultAssay(integrated_3TIP) = "RNA"
# take raw data. In seurat 3 raw.data are called counts
count_raw =as.matrix(GetAssayData(object = integrated_3TIP, slot = "counts"))
# think about performing some kind of normalization
# gene names are stored as rownames
#rownames(count_raw)
# cell names are stored as colnames
#colnames(count_raw)
#A different number of reads is found across each cell.
#We suggest using scTransform to normalise for differences due to cell size,
#then linearly scale. Note that this might be slow.
# devtools::install_github(repo = 'ChristophH/sctransform')
#Note that this is optional (and was not used in the original EWCE publication)
#so by all means ignore this scTransform step.
#library(sctransform)
#scT = sctransform::vst(count_raw, return_cell_attr = TRUE)
#count_raw$exp_scT = correct_counts(scT, count_raw) # umi_corrected
#count_raw$exp_scT_normed = Matrix::t(Matrix::t(count_raw$exp_scT)*(1/Matrix::colSums(count_raw$exp_scT)))
#generate annotLevels
#List with arrays of strings containing the cell type names associated with each column in exp
# create meta data object
meta_data <- cbind(rownames(integrated_3TIP@meta.data),as.data.frame(Idents(integrated_3TIP)))
# create meta data "level2class" definition. It is more precise with EC subset definition
colnames(meta_data)<- c("cell_id","level1class") # was written level2class argh
# create "level1class". all EC subtypes will be called EC
meta_data$level1class <- gsub("IMMATURE", "IMMATURE", meta_data$level1class) # was written level2class argh
meta_data$level1class <- gsub("PROLIFERATING", "PROLIFERATING", meta_data$level1class)
meta_data$level1class <- gsub("TIP", "TIP", meta_data$level1class)
meta_data$level1class <- gsub("VENOUS_PLVAP\\-", "VENOUS_PLVAP\\-", meta_data$level1class)
meta_data$level1class <- gsub("VENOUS_PLVAP\\+", "VENOUS_PLVAP\\+", meta_data$level1class)
meta_data$level1class <- gsub("BARR_END_CAP", "BARR_END_CAP", meta_data$level1class)
meta_data$level1class <- gsub("ARTERIAL", "ARTERIAL", meta_data$level1class)
meta_data$level1class <- gsub("CAPILLARY_PLVAP\\-", "CAPILLARY_PLVAP\\-", as.character(meta_data$level1class))
meta_data$level1class <- gsub("CAPILLARY_PLVAP\\+", "CAPILLARY_PLVAP\\+", meta_data$level1class)
#check if everything went well
unique(meta_data$level1class)
level1class = meta_data$level1class
level2class = meta_data$level1class
#1) Drop genes which do not show significant evidence of varying between level
exp_DROPPED = drop.uninformative.genes(exp=count_raw,level2annot = level2class)
#2) Calculate cell type averages and specificity for each gene
annotLevels = list(level1class=level1class,level2class=level2class)
#3) Drop all genes which do not have 1:1 mouse:human orthologs
fNames = generate.celltype.data(exp=exp_DROPPED,annotLevels=annotLevels,groupName="EWCE_ndn")
fNames = filter.genes.without.1to1.homolog(fNames)
#integrated_3TIP <-readRDS("/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/Bonanomi_1287_scRNA_injury/7_bioinfo/EC_subset/3TIP/integrated_EC_3TIP.Rds")
#integrated = readRDS("/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/Bonanomi_1287_scRNA_injury/7_bioinfo/Subclustering_mm10_M16_TdTomato_cc_2/seurat_objects/all_cell_types_scBonanomi_full.Rds")
#load(fNames[2])
# use the List generated using generate.celltype.data and a differential expression
# table and determines the probability of cell-type enrichment in the up & down regulated genes
#help(ewce_expression_data)
#load dge tables
crush_D14_vs_crush_D7 = read.xlsx(
"/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/BonanomiD_1292_RNASeq/7_bioinfo/combined_samples_1133_1292/DGE_results_Tomato/DGE_results_Tomato.xlsx",
sheet = 1,
startRow = 1,
colNames = TRUE,
rowNames = TRUE,
)
crush_D14_vs_crush_D7$MGI.symbol = rownames(crush_D14_vs_crush_D7)
crush_D14_vs_intact = read.xlsx(
"/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/BonanomiD_1292_RNASeq/7_bioinfo/combined_samples_1133_1292/DGE_results_Tomato/DGE_results_Tomato.xlsx",
sheet = 2,
startRow = 1,
colNames = TRUE,
rowNames = TRUE,
)
crush_D14_vs_intact$MGI.symbol = rownames(crush_D14_vs_intact)
crush_D7_vs_intact = read.xlsx(
"/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/BonanomiD_1292_RNASeq/7_bioinfo/combined_samples_1133_1292/DGE_results_Tomato/DGE_results_Tomato.xlsx",
sheet = 3,
startRow = 1,
colNames = TRUE,
rowNames = TRUE,
)
crush_D7_vs_intact$MGI.symbol = rownames(crush_D7_vs_intact)
load(file = "~//CellTypeData_EWCE_ndn.rda") #now everything is in ctd
KO_vs_WT = read.xlsx(
"/Users/maurizio.aurora/Dropbox (HSR Global)/WORKSPACE/Bonanomi/BonanomiD_1292_RNASeq/7_bioinfo/only_KDRCherry_Combat_no_outliers/DGE_results_Cherry/DGE_results_Cherry.xlsx",
sheet = 1,
startRow = 1,
colNames = TRUE,
rowNames = TRUE,
)
KO_vs_WT$MGI.symbol = rownames(KO_vs_WT)
#load(file = "CellTypeData_DB.rda") #now everything is in ctd
#setwd("/Users/maurizio.aurora/Documents/GitHub/MyOwnGithub/nerve_injury/bulkRNAseq")
#ctd[[1]]$plotting
#ctd[[2]]$plotting
############################################################################################
############################################################################################
############################################################################################
crush_D7_vs_intact = crush_D7_vs_intact[crush_D7_vs_intact$padj < 0.05, ]
tt_results_crush_D7_vs_intact = ewce_expression_data(sct_data=ctd,tt=crush_D7_vs_intact,annotLevel=1,ttSpecies="mouse",sctSpecies="mouse",sortBy="log2FoldChange",
reps = 10000)
write.xlsx(tt_results_crush_D7_vs_intact$joint_results,
file = "D7_vs_intact_barplot.xlsx",
row.names = T,
asTable = T)
tt_results_crush_D7_vs_intact$joint_results$SD_from_mean = tt_results_crush_D7_vs_intact$joint_results$sd_from_mean
tt_results_crush_D7_vs_intact$joint_results$SD_from_mean [which(tt_results_crush_D7_vs_intact$joint_results$SD_from_mean < 0)] = 0
tt_results_crush_D7_vs_intact$joint_results$pvalue = NA
tt_results_crush_D7_vs_intact$joint_results$pvalue[tt_results_crush_D7_vs_intact$joint_results$p<0.05]<-'*'
S3_test_D7 <- ggplot(tt_results_crush_D7_vs_intact$joint_results)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))
pdf("crush_D7_vs_intact_dotplot_minSDzero_pvalue0.05_t.pdf",8,10)
S3_test_D7
dev.off()
############################################################################################
############################################################################################
############################################################################################
crush_D14_vs_intact = crush_D14_vs_intact[crush_D14_vs_intact$padj < 0.05, ]
tt_results_crush_D14_vs_intact = ewce_expression_data(sct_data=ctd,tt=crush_D14_vs_intact,annotLevel=1,ttSpecies="mouse",sctSpecies="mouse",sortBy="log2FoldChange",
reps = 10000)
write.xlsx(tt_results_crush_D14_vs_intact$joint_results,
file = "D14_vs_intact_barplot.xlsx",
row.names = T,
asTable = T)
tt_results_crush_D14_vs_intact$joint_results$SD_from_mean = tt_results_crush_D14_vs_intact$joint_results$sd_from_mean
tt_results_crush_D14_vs_intact$joint_results$SD_from_mean [which(tt_results_crush_D14_vs_intact$joint_results$SD_from_mean < 0)] = 0
tt_results_crush_D14_vs_intact$joint_results$pvalue = NA
tt_results_crush_D14_vs_intact$joint_results$pvalue[tt_results_crush_D14_vs_intact$joint_results$p<0.05]<-'*'
S3_test_D14 <- ggplot(tt_results_crush_D14_vs_intact$joint_results)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))
pdf("crush_D14_vs_intact_dotplot_minSDzero_pvalue0.05_t.pdf",8,10)
S3_test_D14
dev.off()
############################################################################################
############################################################################################
############################################################################################
crush_D14_vs_crush_D7 = crush_D14_vs_crush_D7[crush_D14_vs_crush_D7$padj < 0.05, ]
tt_results_crush_D14_vs_crush_D7 = ewce_expression_data(sct_data=ctd,tt=crush_D14_vs_crush_D7,annotLevel=1,ttSpecies="mouse",sctSpecies="mouse",sortBy="log2FoldChange",
reps = 10000)
write.xlsx(tt_results_crush_D14_vs_crush_D7$joint_results,
file = "D14_vs_D7_barplot.xlsx",
row.names = T,
asTable = T)
tt_results_crush_D14_vs_crush_D7$joint_results$SD_from_mean = tt_results_crush_D14_vs_crush_D7$joint_results$sd_from_mean
tt_results_crush_D14_vs_crush_D7$joint_results$SD_from_mean [which(tt_results_crush_D14_vs_crush_D7$joint_results$SD_from_mean < 0)] = 0
tt_results_crush_D14_vs_crush_D7$joint_results$pvalue = NA
tt_results_crush_D14_vs_crush_D7$joint_results$pvalue[tt_results_crush_D14_vs_crush_D7$joint_results$p<0.05]<-'*'
S3_test_D14_D7 <- ggplot(tt_results_crush_D14_vs_crush_D7$joint_results)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))
pdf("crush_D14_vs_D7_dotplot_minSDzero_pvalue0.05_t.pdf",8,10)
S3_test_D14_D7
dev.off()
############################################################################################
############################################################################################
############################################################################################
KO_vs_WT = KO_vs_WT[KO_vs_WT$padj < 0.05, ]
tt_results_KO_vs_WT = ewce_expression_data(sct_data=ctd,tt=KO_vs_WT,annotLevel=1,ttSpecies="mouse",sctSpecies="mouse",sortBy="log2FoldChange",
reps = 10000)
write.xlsx(tt_results_KO_vs_WT$joint_results,
file = "KO_vs_WT_barplot.xlsx",
row.names = T,
asTable = T)
tt_results_KO_vs_WT$joint_results$SD_from_mean = tt_results_KO_vs_WT$joint_results$sd_from_mean
tt_results_KO_vs_WT$joint_results$SD_from_mean [which(tt_results_KO_vs_WT$joint_results$SD_from_mean < 0)] = 0
tt_results_KO_vs_WT$joint_results$pvalue = NA
tt_results_KO_vs_WT$joint_results$pvalue[tt_results_KO_vs_WT$joint_results$p<0.05]<-'*'
S3_test <- ggplot(tt_results_KO_vs_WT$joint_results)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))
# Fig3 E
pdf("crush_KO_vs_WT_dotplot_minSDzero_pvalue0.05.pdf",8,10)
S3_test
dev.off()
###########
############################################################################################
############################################################################################
############################################################################################
d14d7 = tt_results_crush_D14_vs_crush_D7$joint_results
d14intact = tt_results_crush_D14_vs_intact$joint_results
d7intact = tt_results_crush_D7_vs_intact$joint_results
d14d7$cond = "crushD14_vs_crushD7"
d14intact$cond = "crush_D14_vs_intact"
d7intact$cond = "crush_D7_vs_intact"
combined = rbind(d7intact, d14intact, d14d7 )
combined$cond_f <- factor(combined$cond, levels=c("crush_D7_vs_intact", "crush_D14_vs_intact", "crushD14_vs_crushD7"))
combined_plot <- ggplot(combined)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))+
theme(axis.text.x = element_text(colour = c("blue", "red")))
pdf("EWCE_tomato_3.pdf",13,8)
combined_plot + facet_grid(. ~ cond_f)
dev.off()
############################################################################################
############################################################################################
############################################################################################
combined = rbind(d7intact, d14d7 )
combined$cond_f <- factor(combined$cond, levels=c("crush_D7_vs_intact","crushD14_vs_crushD7"))
combined_plot <- ggplot(combined)+
geom_point(aes(x=Direction, y=CellType, color=Direction,size = SD_from_mean))+
scale_color_manual(values = c("Up" = 'red','Down' = 'blue'))+
theme_classic() + scale_x_discrete(position = "top") +
geom_text(aes(x=Direction, y=CellType, label = pvalue),size = 10, color = "black") +
scale_size(range = c(5, 20))+
theme(text = element_text(size=20, face = "bold"))+
theme(axis.text.x = element_text(colour = c("blue", "red")))
# Fig 2C
pdf("EWCE_tomato_2.pdf",10,8)
combined_plot + facet_grid(. ~ cond_f)
dev.off()
############################################################################################
############################################################################################
############################################################################################