-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubarea resights.R
42 lines (36 loc) · 1.89 KB
/
subarea resights.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
library(magrittr)
library(dplyr)
####Calcuate resights within the same subarea####
#### Written by Amy M. Van Cise ####
#################################################
# capdat dataset comes from RMark_abundance_datainput.R
#assign subarea for each sighting in the dataset
sightlocdat <- capdat %>%
mutate(Long=as.numeric(Long), Lat = as.numeric(Lat)) %>%
filter(!is.na(Long)) %>%
mutate(Long = {ifelse(.$Long > 0, (.$Long*-1), .$Long)}) %>%
mutate(sight.subarea = {ifelse(.$Area == "Kauai/Niihau",
ifelse(abs(.$Long) < 159.5, "KA",
ifelse(.$Lat < 22 & abs(.$Long) < 159.94, "KB",
ifelse(.$Lat > 22 & abs(.$Long) < 159.94,"KC","KD"))),
ifelse(.$Area == "Hawaii",
ifelse(.$Lat <= 19.73, "HB", "HA"),
ifelse(.$Area == "Maui Nui",
ifelse(.$Lat >= 21 & abs(.$Long) > 156.8 | abs(.$Long) >= 157.5, "MA","MB"),
ifelse(.$Area == "Oahu",
ifelse(.$Lat <= 21.5, "OB","OA"),"NA"))))})
#does encounter subarea match first encounter subarea?
sub.sight.prob <- sightlocdat %>%
group_by(ID..) %>%
mutate(insubarea = ifelse(sight.subarea == subarea, TRUE, FALSE)) %>%
slice(2:n()) %>%
summarize(prob.subarea=sum(insubarea==TRUE)/n()) %>%
mutate(prob.subarea = round(prob.subarea,2))
#mean probability of being found in the same subarea as the first encounter
meanprob.sub <- mean(sub.sight.prob$prob.subarea)
#dataset of encounters where individuals were found in a different subarea
sub.sight.diff <- sightlocdat %>%
group_by(ID..) %>%
mutate(insubarea = ifelse(sight.subarea == subarea, TRUE, FALSE)) %>%
slice(2:n()) %>%
filter(insubarea==FALSE)