-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathknowledge_bases.py
895 lines (846 loc) · 37.3 KB
/
knowledge_bases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
# Copyright 2024 Amazon.com and its affiliates; all rights reserved.
# This file is AWS Content and may not be duplicated or distributed without permission
"""
This module contains a helper class for building and using Knowledge Bases for Amazon Bedrock.
The KnowledgeBasesForAmazonBedrock class provides a convenient interface for working with Knowledge Bases.
It includes methods for creating, updating, and invoking Knowledge Bases, as well as managing
IAM roles and OpenSearch Serverless. Here is a quick example of using
the class:
>>> from knowledge_base import KnowledgeBasesForAmazonBedrock
>>> kb = KnowledgeBasesForAmazonBedrock()
>>> kb_name = "my-knowledge-base-test"
>>> kb_description = "my knowledge base description"
>>> data_bucket_name = "<s3_bucket_with_kb_dataset>"
>>> kb_id, ds_id = kb.create_or_retrieve_knowledge_base(kb_name, kb_description, data_bucket_name)
>>> kb.synchronize_data(kb_id, ds_id)
Here is a summary of the most important methods:
- create_or_retrieve_knowledge_base: Creates a new Knowledge Base or retrieves an existent one.
- synchronize_data: Syncronize the Knowledge Base with the
"""
import json
import boto3
import time
from botocore.exceptions import ClientError
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth, RequestError
import pprint
from retrying import retry
import random
valid_embedding_models = [
"cohere.embed-multilingual-v3", "cohere.embed-english-v3", "amazon.titan-embed-text-v1",
"amazon.titan-embed-text-v2:0"
]
pp = pprint.PrettyPrinter(indent=2)
def interactive_sleep(seconds: int):
"""
Support functionality to induce an artificial 'sleep' to the code in order to wait for resources to be available
Args:
seconds (int): number of seconds to sleep for
"""
dots = ''
for i in range(seconds):
dots += '.'
print(dots, end='\r')
time.sleep(1)
class KnowledgeBasesForAmazonBedrock:
"""
Support class that allows for:
- creation (or retrieval) of a Knowledge Base for Amazon Bedrock with all its pre-requisites
(including OSS, IAM roles and Permissions and S3 bucket)
- Ingestion of data into the Knowledge Base
- Deletion of all resources created
"""
def __init__(self, suffix=None):
"""
Class initializer
"""
boto3_session = boto3.session.Session()
self.region_name = boto3_session.region_name
self.iam_client = boto3_session.client('iam')
self.account_number = boto3.client('sts').get_caller_identity().get('Account')
self.suffix = random.randrange(200, 900)
self.identity = boto3.client('sts').get_caller_identity()['Arn']
self.aoss_client = boto3_session.client('opensearchserverless')
self.s3_client = boto3.client('s3')
self.bedrock_agent_client = boto3.client('bedrock-agent')
self.bedrock_agent_client = boto3.client(
'bedrock-agent',
region_name=self.region_name
)
credentials = boto3.Session().get_credentials()
self.awsauth = AWSV4SignerAuth(credentials, self.region_name, 'aoss')
self.oss_client = None
def create_or_retrieve_knowledge_base(
self,
kb_name: str,
kb_description: str = None,
data_bucket_name: str = None,
embedding_model: str = "amazon.titan-embed-text-v2:0"
):
"""
Function used to create a new Knowledge Base or retrieve an existent one
Args:
kb_name: Knowledge Base Name
kb_description: Knowledge Base Description
data_bucket_name: Name of s3 Bucket containing Knowledge Base Data
embedding_model: Name of Embedding model to be used on Knowledge Base creation
Returns:
kb_id: str - Knowledge base id
ds_id: str - Data Source id
"""
kb_id = None
ds_id = None
kbs_available = self.bedrock_agent_client.list_knowledge_bases(
maxResults=100,
)
for kb in kbs_available["knowledgeBaseSummaries"]:
if kb_name == kb["name"]:
kb_id = kb["knowledgeBaseId"]
if kb_id is not None:
ds_available = self.bedrock_agent_client.list_data_sources(
knowledgeBaseId=kb_id,
maxResults=100,
)
for ds in ds_available["dataSourceSummaries"]:
if kb_id == ds["knowledgeBaseId"]:
ds_id = ds["dataSourceId"]
print(f"Knowledge Base {kb_name} already exists.")
print(f"Retrieved Knowledge Base Id: {kb_id}")
print(f"Retrieved Data Source Id: {ds_id}")
else:
print(f"Creating KB {kb_name}")
# self.kb_name = kb_name
# self.kb_description = kb_description
if data_bucket_name is None:
kb_name_temp = kb_name.replace("_", "-")
data_bucket_name = f"{kb_name_temp}-{self.suffix}"
print(f"KB bucket name not provided, creating a new one called: {data_bucket_name}")
if embedding_model not in valid_embedding_models:
valid_embeddings_str = str(valid_embedding_models)
raise ValueError(f"Invalid embedding model. Your embedding model should be one of {valid_embeddings_str}")
# self.embedding_model = embedding_model
encryption_policy_name = f"{kb_name}-sp-{self.suffix}"
network_policy_name = f"{kb_name}-np-{self.suffix}"
access_policy_name = f'{kb_name}-ap-{self.suffix}'
kb_execution_role_name = f'AmazonBedrockExecutionRoleForKnowledgeBase_{self.suffix}'
fm_policy_name = f'AmazonBedrockFoundationModelPolicyForKnowledgeBase_{self.suffix}'
s3_policy_name = f'AmazonBedrockS3PolicyForKnowledgeBase_{self.suffix}'
oss_policy_name = f'AmazonBedrockOSSPolicyForKnowledgeBase_{self.suffix}'
vector_store_name = f'{kb_name}-{self.suffix}'
index_name = f"{kb_name}-index-{self.suffix}"
print("========================================================================================")
print(f"Step 1 - Creating or retrieving {data_bucket_name} S3 bucket for Knowledge Base documents")
self.create_s3_bucket(data_bucket_name)
print("========================================================================================")
print(f"Step 2 - Creating Knowledge Base Execution Role ({kb_execution_role_name}) and Policies")
bedrock_kb_execution_role = self.create_bedrock_kb_execution_role(
embedding_model, data_bucket_name, fm_policy_name, s3_policy_name, kb_execution_role_name
)
print("========================================================================================")
print(f"Step 3 - Creating OSS encryption, network and data access policies")
encryption_policy, network_policy, access_policy = self.create_policies_in_oss(
encryption_policy_name, vector_store_name, network_policy_name,
bedrock_kb_execution_role, access_policy_name
)
print("========================================================================================")
print(f"Step 4 - Creating OSS Collection (this step takes a couple of minutes to complete)")
host, collection, collection_id, collection_arn = self.create_oss(
vector_store_name, oss_policy_name, bedrock_kb_execution_role
)
# Build the OpenSearch client
self.oss_client = OpenSearch(
hosts=[{'host': host, 'port': 443}],
http_auth=self.awsauth,
use_ssl=True,
verify_certs=True,
connection_class=RequestsHttpConnection,
timeout=300
)
print("========================================================================================")
print(f"Step 5 - Creating OSS Vector Index")
self.create_vector_index(index_name)
print("========================================================================================")
print(f"Step 6 - Creating Knowledge Base")
knowledge_base, data_source = self.create_knowledge_base(
collection_arn, index_name, data_bucket_name, embedding_model,
kb_name, kb_description, bedrock_kb_execution_role
)
interactive_sleep(60)
print("========================================================================================")
kb_id = knowledge_base['knowledgeBaseId']
ds_id = data_source["dataSourceId"]
return kb_id, ds_id
def create_s3_bucket(self, bucket_name: str):
"""
Check if bucket exists, and if not create S3 bucket for knowledge base data source
Args:
bucket_name: s3 bucket name
"""
try:
self.s3_client.head_bucket(Bucket=bucket_name)
print(f'Bucket {bucket_name} already exists - retrieving it!')
except ClientError as e:
print(f'Creating bucket {bucket_name}')
if self.region_name == "us-east-1":
self.s3_client.create_bucket(
Bucket=bucket_name
)
else:
self.s3_client.create_bucket(
Bucket=bucket_name,
CreateBucketConfiguration={'LocationConstraint': self.region_name}
)
def create_bedrock_kb_execution_role(
self,
embedding_model: str,
bucket_name: str,
fm_policy_name: str,
s3_policy_name: str,
kb_execution_role_name: str
):
"""
Create Knowledge Base Execution IAM Role and its required policies.
If role and/or policies already exist, retrieve them
Args:
embedding_model: the embedding model used by the knowledge base
bucket_name: the bucket name used by the knowledge base
fm_policy_name: the name of the foundation model access policy
s3_policy_name: the name of the s3 access policy
kb_execution_role_name: the name of the knowledge base execution role
Returns:
IAM role created
"""
foundation_model_policy_document = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"bedrock:InvokeModel",
],
"Resource": [
f"arn:aws:bedrock:{self.region_name}::foundation-model/{embedding_model}"
]
}
]
}
s3_policy_document = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
],
"Resource": [
f"arn:aws:s3:::{bucket_name}",
f"arn:aws:s3:::{bucket_name}/*"
],
"Condition": {
"StringEquals": {
"aws:ResourceAccount": f"{self.account_number}"
}
}
}
]
}
assume_role_policy_document = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "bedrock.amazonaws.com"
},
"Action": "sts:AssumeRole"
},
{
"Sid": "",
"Effect": "Allow",
"Principal": {
"Service": "preprod.bedrock.aws.internal"
},
"Action": "sts:AssumeRole"
},
{
"Sid": "",
"Effect": "Allow",
"Principal": {
"Service": "beta.bedrock.aws.internal"
},
"Action": "sts:AssumeRole"
}
]
}
try:
# create policies based on the policy documents
fm_policy = self.iam_client.create_policy(
PolicyName=fm_policy_name,
PolicyDocument=json.dumps(foundation_model_policy_document),
Description='Policy for accessing foundation model',
)
except self.iam_client.exceptions.EntityAlreadyExistsException:
print(f"{fm_policy_name} already exists, retrieving it!")
fm_policy = self.iam_client.get_policy(
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{fm_policy_name}"
)
try:
s3_policy = self.iam_client.create_policy(
PolicyName=s3_policy_name,
PolicyDocument=json.dumps(s3_policy_document),
Description='Policy for reading documents from s3')
except self.iam_client.exceptions.EntityAlreadyExistsException:
print(f"{s3_policy_name} already exists, retrieving it!")
s3_policy = self.iam_client.get_policy(
PolicyArn=f"arn:aws:iam::{self.account_number}:policy/{s3_policy_name}"
)
# create bedrock execution role
try:
bedrock_kb_execution_role = self.iam_client.create_role(
RoleName=kb_execution_role_name,
AssumeRolePolicyDocument=json.dumps(assume_role_policy_document),
Description='Amazon Bedrock Knowledge Base Execution Role for accessing OSS and S3',
MaxSessionDuration=3600
)
except self.iam_client.exceptions.EntityAlreadyExistsException:
print(f"{kb_execution_role_name} already exists, retrieving it!")
bedrock_kb_execution_role = self.iam_client.get_role(
RoleName=kb_execution_role_name
)
# fetch arn of the policies and role created above
s3_policy_arn = s3_policy["Policy"]["Arn"]
fm_policy_arn = fm_policy["Policy"]["Arn"]
# attach policies to Amazon Bedrock execution role
self.iam_client.attach_role_policy(
RoleName=bedrock_kb_execution_role["Role"]["RoleName"],
PolicyArn=fm_policy_arn
)
self.iam_client.attach_role_policy(
RoleName=bedrock_kb_execution_role["Role"]["RoleName"],
PolicyArn=s3_policy_arn
)
return bedrock_kb_execution_role
def create_oss_policy_attach_bedrock_execution_role(
self,
collection_id: str, oss_policy_name: str,
bedrock_kb_execution_role: str
):
"""
Create OpenSearch Serverless policy and attach it to the Knowledge Base Execution role.
If policy already exists, attaches it
Args:
collection_id: collection id
oss_policy_name: opensearch serverless policy name
bedrock_kb_execution_role: knowledge base execution role
Returns:
created: bool - boolean to indicate if role was created
"""
# define oss policy document
oss_policy_document = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"aoss:APIAccessAll"
],
"Resource": [
f"arn:aws:aoss:{self.region_name}:{self.account_number}:collection/{collection_id}"
]
}
]
}
oss_policy_arn = f"arn:aws:iam::{self.account_number}:policy/{oss_policy_name}"
created = False
try:
self.iam_client.create_policy(
PolicyName=oss_policy_name,
PolicyDocument=json.dumps(oss_policy_document),
Description='Policy for accessing opensearch serverless',
)
created = True
except self.iam_client.exceptions.EntityAlreadyExistsException:
print(f"Policy {oss_policy_arn} already exists, updating it")
print("Opensearch serverless arn: ", oss_policy_arn)
self.iam_client.attach_role_policy(
RoleName=bedrock_kb_execution_role["Role"]["RoleName"],
PolicyArn=oss_policy_arn
)
return created
def create_policies_in_oss(
self, encryption_policy_name: str, vector_store_name: str, network_policy_name: str,
bedrock_kb_execution_role: str, access_policy_name: str
):
"""
Create OpenSearch Serverless encryption, network and data access policies.
If policies already exist, retrieve them
Args:
encryption_policy_name: name of the data encryption policy
vector_store_name: name of the vector store
network_policy_name: name of the network policy
bedrock_kb_execution_role: name of the knowledge base execution role
access_policy_name: name of the data access policy
Returns:
encryption_policy, network_policy, access_policy
"""
try:
encryption_policy = self.aoss_client.create_security_policy(
name=encryption_policy_name,
policy=json.dumps(
{
'Rules': [{'Resource': ['collection/' + vector_store_name],
'ResourceType': 'collection'}],
'AWSOwnedKey': True
}),
type='encryption'
)
except self.aoss_client.exceptions.ConflictException:
print(f"{encryption_policy_name} already exists, retrieving it!")
encryption_policy = self.aoss_client.get_security_policy(
name=encryption_policy_name,
type='encryption'
)
try:
network_policy = self.aoss_client.create_security_policy(
name=network_policy_name,
policy=json.dumps(
[
{'Rules': [{'Resource': ['collection/' + vector_store_name],
'ResourceType': 'collection'}],
'AllowFromPublic': True}
]),
type='network'
)
except self.aoss_client.exceptions.ConflictException:
print(f"{network_policy_name} already exists, retrieving it!")
network_policy = self.aoss_client.get_security_policy(
name=network_policy_name,
type='network'
)
try:
access_policy = self.aoss_client.create_access_policy(
name=access_policy_name,
policy=json.dumps(
[
{
'Rules': [
{
'Resource': ['collection/' + vector_store_name],
'Permission': [
'aoss:CreateCollectionItems',
'aoss:DeleteCollectionItems',
'aoss:UpdateCollectionItems',
'aoss:DescribeCollectionItems'],
'ResourceType': 'collection'
},
{
'Resource': ['index/' + vector_store_name + '/*'],
'Permission': [
'aoss:CreateIndex',
'aoss:DeleteIndex',
'aoss:UpdateIndex',
'aoss:DescribeIndex',
'aoss:ReadDocument',
'aoss:WriteDocument'],
'ResourceType': 'index'
}],
'Principal': [self.identity, bedrock_kb_execution_role['Role']['Arn']],
'Description': 'Easy data policy'}
]),
type='data'
)
except self.aoss_client.exceptions.ConflictException:
print(f"{access_policy_name} already exists, retrieving it!")
access_policy = self.aoss_client.get_access_policy(
name=access_policy_name,
type='data'
)
return encryption_policy, network_policy, access_policy
def create_oss(self, vector_store_name: str, oss_policy_name: str, bedrock_kb_execution_role: str):
"""
Create OpenSearch Serverless Collection. If already existent, retrieve
Args:
vector_store_name: name of the vector store
oss_policy_name: name of the opensearch serverless access policy
bedrock_kb_execution_role: name of the knowledge base execution role
"""
try:
collection = self.aoss_client.create_collection(
name=vector_store_name, type='VECTORSEARCH'
)
collection_id = collection['createCollectionDetail']['id']
collection_arn = collection['createCollectionDetail']['arn']
except self.aoss_client.exceptions.ConflictException:
collection = self.aoss_client.batch_get_collection(
names=[vector_store_name]
)['collectionDetails'][0]
pp.pprint(collection)
collection_id = collection['id']
collection_arn = collection['arn']
pp.pprint(collection)
# Get the OpenSearch serverless collection URL
host = collection_id + '.' + self.region_name + '.aoss.amazonaws.com'
print(host)
# wait for collection creation
# This can take couple of minutes to finish
response = self.aoss_client.batch_get_collection(names=[vector_store_name])
# Periodically check collection status
while (response['collectionDetails'][0]['status']) == 'CREATING':
print('Creating collection...')
interactive_sleep(30)
response = self.aoss_client.batch_get_collection(names=[vector_store_name])
print('\nCollection successfully created:')
pp.pprint(response["collectionDetails"])
# create opensearch serverless access policy and attach it to Bedrock execution role
try:
created = self.create_oss_policy_attach_bedrock_execution_role(
collection_id, oss_policy_name, bedrock_kb_execution_role
)
if created:
# It can take up to a minute for data access rules to be enforced
print("Sleeping for a minute to ensure data access rules have been enforced")
interactive_sleep(60)
return host, collection, collection_id, collection_arn
except Exception as e:
print("Policy already exists")
pp.pprint(e)
def create_vector_index(self, index_name: str):
"""
Create OpenSearch Serverless vector index. If existent, ignore
Args:
index_name: name of the vector index
"""
body_json = {
"settings": {
"index.knn": "true",
"number_of_shards": 1,
"knn.algo_param.ef_search": 512,
"number_of_replicas": 0,
},
"mappings": {
"properties": {
"vector": {
"type": "knn_vector",
"dimension": 1024,
"method": {
"name": "hnsw",
"engine": "faiss",
"space_type": "l2"
},
},
"text": {
"type": "text"
},
"text-metadata": {
"type": "text"}
}
}
}
# Create index
try:
response = self.oss_client.indices.create(index=index_name, body=json.dumps(body_json))
print('\nCreating index:')
pp.pprint(response)
# index creation can take up to a minute
interactive_sleep(60)
except RequestError as e:
# you can delete the index if its already exists
# oss_client.indices.delete(index=index_name)
print(
f'Error while trying to create the index, with error {e.error}\nyou may unmark the delete above to '
f'delete, and recreate the index')
@retry(wait_random_min=1000, wait_random_max=2000, stop_max_attempt_number=7)
def create_knowledge_base(
self, collection_arn: str, index_name: str, bucket_name: str, embedding_model: str,
kb_name: str, kb_description: str, bedrock_kb_execution_role: str
):
"""
Create Knowledge Base and its Data Source. If existent, retrieve
Args:
collection_arn: ARN of the opensearch serverless collection
index_name: name of the opensearch serverless index
bucket_name: name of the s3 bucket containing the knowledge base data
embedding_model: id of the embedding model used
kb_name: knowledge base name
kb_description: knowledge base description
bedrock_kb_execution_role: knowledge base execution role
Returns:
knowledge base object,
data source object
"""
opensearch_serverless_configuration = {
"collectionArn": collection_arn,
"vectorIndexName": index_name,
"fieldMapping": {
"vectorField": "vector",
"textField": "text",
"metadataField": "text-metadata"
}
}
# Ingest strategy - How to ingest data from the data source
chunking_strategy_configuration = {
"chunkingStrategy": "FIXED_SIZE",
"fixedSizeChunkingConfiguration": {
"maxTokens": 150,
"overlapPercentage": 20
}
}
# The data source to ingest documents from, into the OpenSearch serverless knowledge base index
s3_configuration = {
"bucketArn": f"arn:aws:s3:::{bucket_name}",
# "inclusionPrefixes":["*.*"] # you can use this if you want to create a KB using data within s3 prefixes.
}
# The embedding model used by Bedrock to embed ingested documents, and realtime prompts
embedding_model_arn = f"arn:aws:bedrock:{self.region_name}::foundation-model/{embedding_model}"
print(str({
"type": "VECTOR",
"vectorKnowledgeBaseConfiguration": {
"embeddingModelArn": embedding_model_arn
}
}))
try:
create_kb_response = self.bedrock_agent_client.create_knowledge_base(
name=kb_name,
description=kb_description,
roleArn=bedrock_kb_execution_role['Role']['Arn'],
knowledgeBaseConfiguration={
"type": "VECTOR",
"vectorKnowledgeBaseConfiguration": {
"embeddingModelArn": embedding_model_arn
}
},
storageConfiguration={
"type": "OPENSEARCH_SERVERLESS",
"opensearchServerlessConfiguration": opensearch_serverless_configuration
}
)
kb = create_kb_response["knowledgeBase"]
pp.pprint(kb)
except self.bedrock_agent_client.exceptions.ConflictException:
kbs = self.bedrock_agent_client.list_knowledge_bases(
maxResults=100
)
kb_id = None
for kb in kbs['knowledgeBaseSummaries']:
if kb['name'] == kb_name:
kb_id = kb['knowledgeBaseId']
response = self.bedrock_agent_client.get_knowledge_base(knowledgeBaseId=kb_id)
kb = response['knowledgeBase']
pp.pprint(kb)
# Create a DataSource in KnowledgeBase
try:
create_ds_response = self.bedrock_agent_client.create_data_source(
name=kb_name,
description=kb_description,
knowledgeBaseId=kb['knowledgeBaseId'],
dataDeletionPolicy='RETAIN',
dataSourceConfiguration={
"type": "S3",
"s3Configuration": s3_configuration
},
vectorIngestionConfiguration={
"chunkingConfiguration": chunking_strategy_configuration
}
)
ds = create_ds_response["dataSource"]
pp.pprint(ds)
except self.bedrock_agent_client.exceptions.ConflictException:
ds_id = self.bedrock_agent_client.list_data_sources(
knowledgeBaseId=kb['knowledgeBaseId'],
maxResults=100
)['dataSourceSummaries'][0]['dataSourceId']
get_ds_response = self.bedrock_agent_client.get_data_source(
dataSourceId=ds_id,
knowledgeBaseId=kb['knowledgeBaseId']
)
ds = get_ds_response["dataSource"]
pp.pprint(ds)
return kb, ds
def synchronize_data(self, kb_id, ds_id):
"""
Start an ingestion job to synchronize data from an S3 bucket to the Knowledge Base
and waits for the job to be completed
Args:
kb_id: knowledge base id
ds_id: data source id
"""
# ensure that the kb is available
i_status = ['CREATING', 'DELETING', 'UPDATING']
while self.bedrock_agent_client.get_knowledge_base(knowledgeBaseId=kb_id)['knowledgeBase']['status'] in i_status:
time.sleep(10)
# Start an ingestion job
start_job_response = self.bedrock_agent_client.start_ingestion_job(
knowledgeBaseId=kb_id,
dataSourceId=ds_id
)
job = start_job_response["ingestionJob"]
pp.pprint(job)
# Get job
while job['status'] != 'COMPLETE':
get_job_response = self.bedrock_agent_client.get_ingestion_job(
knowledgeBaseId=kb_id,
dataSourceId=ds_id,
ingestionJobId=job["ingestionJobId"]
)
job = get_job_response["ingestionJob"]
pp.pprint(job)
interactive_sleep(40)
def delete_kb(self, kb_name: str, delete_s3_bucket: bool = True, delete_iam_roles_and_policies: bool = True,
delete_aoss: bool = True):
"""
Delete the Knowledge Base resources
Args:
kb_name: name of the knowledge base to delete
delete_s3_bucket (bool): boolean to indicate if s3 bucket should also be deleted
delete_iam_roles_and_policies (bool): boolean to indicate if IAM roles and Policies should also be deleted
delete_aoss: boolean to indicate if amazon opensearch serverless resources should also be deleted
"""
kbs_available = self.bedrock_agent_client.list_knowledge_bases(
maxResults=100,
)
kb_id = None
ds_id = None
for kb in kbs_available["knowledgeBaseSummaries"]:
if kb_name == kb["name"]:
kb_id = kb["knowledgeBaseId"]
kb_details = self.bedrock_agent_client.get_knowledge_base(
knowledgeBaseId=kb_id
)
kb_role = kb_details['knowledgeBase']['roleArn'].split("/")[1]
collection_id = kb_details['knowledgeBase']['storageConfiguration']['opensearchServerlessConfiguration']['collectionArn'].split(
'/')[1]
index_name = kb_details['knowledgeBase']['storageConfiguration']['opensearchServerlessConfiguration'][
'vectorIndexName']
encryption_policies = self.aoss_client.list_security_policies(
maxResults=100,
type='encryption'
)
encryption_policy_name = None
for ep in encryption_policies['securityPolicySummaries']:
if ep['name'].startswith(kb_name):
encryption_policy_name = ep['name']
network_policies = self.aoss_client.list_security_policies(
maxResults=100,
type='network'
)
network_policy_name = None
for np in network_policies['securityPolicySummaries']:
if np['name'].startswith(kb_name):
network_policy_name = np['name']
data_policies = self.aoss_client.list_access_policies(
maxResults=100,
type='data'
)
access_policy_name = None
for dp in data_policies['accessPolicySummaries']:
if dp['name'].startswith(kb_name):
access_policy_name = dp['name']
ds_available = self.bedrock_agent_client.list_data_sources(
knowledgeBaseId=kb_id,
maxResults=100,
)
for ds in ds_available["dataSourceSummaries"]:
if kb_id == ds["knowledgeBaseId"]:
ds_id = ds["dataSourceId"]
ds_details = self.bedrock_agent_client.get_data_source(
dataSourceId=ds_id,
knowledgeBaseId=kb_id,
)
bucket_name = ds_details['dataSource']['dataSourceConfiguration']['s3Configuration']['bucketArn'].replace(
"arn:aws:s3:::", "")
try:
self.bedrock_agent_client.delete_data_source(
dataSourceId=ds_id,
knowledgeBaseId=kb_id
)
print("Data Source deleted successfully!")
except Exception as e:
print(e)
try:
self.bedrock_agent_client.delete_knowledge_base(
knowledgeBaseId=kb_id
)
print("Knowledge Base deleted successfully!")
except Exception as e:
print(e)
if delete_aoss:
try:
self.oss_client.indices.delete(index=index_name)
print("OpenSource Serveless Index deleted successfully!")
except Exception as e:
print(e)
try:
self.aoss_client.delete_collection(id=collection_id)
print("OpenSource Collection Index deleted successfully!")
except Exception as e:
print(e)
try:
self.aoss_client.delete_access_policy(
type="data",
name=access_policy_name
)
print("OpenSource Serveless access policy deleted successfully!")
except Exception as e:
print(e)
try:
self.aoss_client.delete_security_policy(
type="network",
name=network_policy_name
)
print("OpenSource Serveless network policy deleted successfully!")
except Exception as e:
print(e)
try:
self.aoss_client.delete_security_policy(
type="encryption",
name=encryption_policy_name
)
print("OpenSource Serveless encryption policy deleted successfully!")
except Exception as e:
print(e)
if delete_s3_bucket:
try:
self.delete_s3(bucket_name)
print("Knowledge Base S3 bucket deleted successfully!")
except Exception as e:
print(e)
if delete_iam_roles_and_policies:
try:
self.delete_iam_roles_and_policies(kb_role)
print("Knowledge Base Roles and Policies deleted successfully!")
except Exception as e:
print(e)
print("Resources deleted successfully!")
def delete_iam_roles_and_policies(self, kb_execution_role_name: str):
"""
Delete IAM Roles and policies used by the Knowledge Base
Args:
kb_execution_role_name: knowledge base execution role
"""
attached_policies = self.iam_client.list_attached_role_policies(
RoleName=kb_execution_role_name,
MaxItems=100
)
policies_arns = []
for policy in attached_policies['AttachedPolicies']:
policies_arns.append(policy['PolicyArn'])
for policy in policies_arns:
self.iam_client.detach_role_policy(
RoleName=kb_execution_role_name,
PolicyArn=policy
)
self.iam_client.delete_policy(PolicyArn=policy)
self.iam_client.delete_role(RoleName=kb_execution_role_name)
return 0
def delete_s3(self, bucket_name: str):
"""
Delete the objects contained in the Knowledge Base S3 bucket.
Once the bucket is empty, delete the bucket
Args:
bucket_name: bucket name
"""
objects = self.s3_client.list_objects(Bucket=bucket_name)
if 'Contents' in objects:
for obj in objects['Contents']:
self.s3_client.delete_object(Bucket=bucket_name, Key=obj['Key'])
self.s3_client.delete_bucket(Bucket=bucket_name)