forked from serrano-pozo-lab/glia-ihc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmicroglia-cnn.Rmd
951 lines (669 loc) · 36.1 KB
/
microglia-cnn.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
---
title: "Convolutional Neural Network for Microglia Classification"
description: |
This Python script trains a convolutional neural network to predict diagnosis (i.e., CTRL vs. AD) at the single-microglia level using raw image features.
bibliography: glia-ihc-bibliography.bib
csl: https://www.zotero.org/styles/nature-communications
author:
- first_name: "Ayush"
last_name: "Noori"
url: https://www.github.com/ayushnoori
affiliation: Massachusetts General Hospital
affiliation_url: https://www.serranopozolab.org
orcid_id: 0000-0003-1420-1236
- first_name: "Colin"
last_name: "Magdamo"
affiliation: Massachusetts General Hospital
affiliation_url: https://www.massgeneral.org/neurology/research/mind-data-science-lab
orcid_id: 0000-0001-8965-4630
output:
distill::distill_article:
toc: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(eval = FALSE)
```
# Dependencies
```{python}
# data manipulation and visualization
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import *
from skimage import io
# PyTorch
import torch
from torch import nn, optim
import torchvision
from torchvision import transforms, datasets, models
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torch.utils.data.sampler import SubsetRandomSampler
# file management and time
import time
from datetime import datetime
import os
# create time object used for file names
my_time = datetime.now()
base_dir = "<insert your directory here>"
# set seeds to make computations deterministic
torch.manual_seed(1234)
np.random.seed(1234)
# set CUDA device
device = torch.device('cuda:1')
print(torch.cuda.is_available())
print(torch.cuda.get_device_name(1))
def togpu(x):
# return x.cuda()
return x.to(device)
def tocpu(x):
return x.cpu()
```
# Define Data Transformations
The order of astrocyte markers (out of 17 markers in the original crops) prior to data transformation is specified below, used in the `select_channels()` function (zero-indexed).
| DAPI | IBA1 | MHC2 | CD68 | TMEM119 | TSPO | FTL |
|:----:|:----:|:----:|:----:|:-------:|:----:|:---:|
| 1 | 3 | 5 | 9 | 8 | 6 | 12 |
```{python}
def to_tensor(x):
x = np.ndarray.astype(x, float)
x /= 255 # normalize to a 0-1 distribution
return torch.from_numpy(x)
def select_channels(x):
return x[[0, 2, 4, 8, 7, 5, 11]]
def norm(x): # calculate mean and std for each channel
my_mean = []; my_std = []
for c in x:
channel_std = c.std().item() # return std of channel n as float
if channel_std == 0: # prevent division by zero error
channel_std += 1e-05
my_mean.append(c.mean().item()) # return mean of channel n as float, append
my_std.append(channel_std) # append std of channel n
return torchvision.transforms.functional.normalize(x, tuple(my_mean), tuple(my_std))
# define data transforms
data_transform = transforms.Compose([
to_tensor,
select_channels,
norm # mean is 0 and std is 1 for all images
])
```
# Load Data
Load data into workspace, use `sci-kit` loader as `PIL` truncates at three channels.
```{python}
# load data
train_data = datasets.ImageFolder(data_dir + "Train", transform = data_transform, loader = io.imread)
val_data = datasets.ImageFolder(data_dir + "Validation", transform = data_transform, loader = io.imread)
test_data = datasets.ImageFolder(data_dir + "Test", transform = data_transform, loader = io.imread)
num_workers = 0 # number of subprocesses to use for data loading
```
Function to visualize specific astrocytes.
```{python}
from matplotlib.colors import Colormap, ListedColormap
marker = ["DAPI", "IBA1", "MHC2", "CD68", "TMEM119", "TSPO", "FTL"]
colormaps = ["Blues", "Greens", "Reds", "RdPu", "BuGn", "BuPu", "Oranges"]
def plotMicroglia(img, lab, idx, outdir = None): # dat = test_data or train_data
# given that train_data.class_to_idx is {'AD': 0, 'CTRL': 1}
if lab == 0:
img_title = "Alzheimer"
else:
img_title = "Control"
fig, axs = plt.subplots(2, 4, figsize = (10, 4))
plt.suptitle("Microglia #" + str(idx + 1) + ": " + img_title, fontsize = 14, fontweight = "bold")
fig.tight_layout(h_pad = 1)
i = 0
for r in range(2):
for c in range(4):
if(i < len(marker)):
cm = get_cmap(colormaps[i])(range(255))
cm = ListedColormap(cm)
axs[r, c].imshow(img[i], cmap = cm)
axs[r, c].set_title(marker[i])
i += 1
axs[r, c].get_xaxis().set_visible(False)
axs[r, c].get_yaxis().set_visible(False)
axs[1, 3].set_axis_off()
```
Get dataset lengths.
```{python}
# obtain training, validation, and test length
num_train = len(train_data)
num_val = len(val_data)
num_test = len(test_data)
# define testing data loader
test_loader = DataLoader(test_data, batch_size = 20, shuffle = False)
# print output
print("Train: " + str(num_train) + "\t\t" + "Validation: " + str(num_val) + "\t\t" + "Test: " + str(num_test))
```
# Define Model Architecture
Model architecture is defined with four convolutional layers and three dense layers. All convolutional layers use the ReLU (rectified linear unit) activation function, and the first three convolutional layers are followed by max-pooling and dropout layers. The number of output channels and dropout probabilities are set as tunable hyperparameters.
```{python}
from torch.autograd import Variable
import torch.nn.functional as F
import torch.optim as optim
class MicrogliaCNN(torch.nn.Module):
def __init__(self, trial):
super(MicrogliaCNN, self).__init__()
# define number of outgoing filters
out_channels_1 = trial.suggest_int("out_channels_1", 64, 256)
out_channels_2 = trial.suggest_int("out_channels_2", 64, out_channels_1)
out_channels_3 = trial.suggest_int("out_channels_3", 32, out_channels_2)
out_channels_4 = trial.suggest_int("out_channels_4", 8, 32)
self.feature_length = out_channels_4
# the shape of the input images are 7 x 64 x 64
self.conv1 = torch.nn.Conv2d(in_channels=7, out_channels=out_channels_1, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(in_channels=out_channels_1, out_channels=out_channels_2, kernel_size=3, padding=1)
self.conv3 = torch.nn.Conv2d(in_channels=out_channels_2, out_channels=out_channels_3, kernel_size=3, padding=1)
self.conv4 = torch.nn.Conv2d(in_channels=out_channels_3, out_channels=out_channels_4, kernel_size=3, padding=1)
# after pooling, the input feature vector should be 64 x 8 x 8
self.fc1 = torch.nn.Linear(in_features=(out_channels_4 * 8 * 8), out_features=1024)
self.fc2 = torch.nn.Linear(in_features=1024, out_features=64)
self.fc3 = torch.nn.Linear(in_features=64, out_features=2)
# define ReLU and max-pooling layers
self.relu = torch.nn.ReLU(inplace=False)
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
# define dropout layers
dropout_prob_1 = trial.suggest_float("dropout_prob_1", 0.2, 0.8)
self.dropout1 = torch.nn.Dropout(p = dropout_prob_1, inplace=False)
dropout_prob_2 = trial.suggest_float("dropout_prob_2", 0.2, 0.8)
self.dropout2 = torch.nn.Dropout(p = dropout_prob_2, inplace=False)
dropout_prob_3 = trial.suggest_float("dropout_prob_3", 0.2, 0.8)
self.dropout3 = torch.nn.Dropout(p = dropout_prob_3, inplace=False)
self.loss_list = []
self.acc_list = []
self.val_acc = []
self.val_loss = []
self.epoch_val_loss = []
self.epoch_val_auc = []
# print all of the hyperparameters of the training iteration:
print("\n\n====== MICROGLIA CNN ======")
print("Dropout Probabilities: [1] {} --> [2] {} --> [3] {}".format(dropout_prob_1, dropout_prob_2, dropout_prob_3))
print("Number of Kernels: [1] {} --> [2] {} --> [3] {} --> [4] {}".format(out_channels_1, out_channels_2, out_channels_3, out_channels_4))
print("=" * 27)
def forward(self, x):
## FEATURE EXTRACTOR
# size changes from (9, 64, 64) to (64, 64, 64)
x = self.relu(self.conv1(x)) # first convolution, then ReLU non-linearity
x = self.pool(x) # max-pooling to downsample (64, 64, 64) to (64, 32, 32)
x = self.dropout1(x) # dropout layer to prevent overfitting
# (64, 32, 32) to (64, 32, 32)
x = self.relu(self.conv2(x)) # second convolution, then ReLU non-linearity
x = self.pool(x) # max-pooling to downsample (64, 32, 32) to (64, 16, 16)
x = self.dropout2(x) # dropout layer to prevent overfitting
# (64, 16, 16) to (64, 16, 16)
x = self.relu(self.conv3(x)) # third convolution, then ReLU non-linearity
x = self.pool(x) # max-pooling to downsample (64, 16, 16) to (64, 8, 8)
x = self.dropout3(x) # dropout layer to prevent overfitting
# (64, 8, 8) to (64, 8, 8)
x = self.relu(self.conv4(x)) # four convolution, then ReLU non-linearity
## COLLAPSE TO FEATURE VECTOR
x = x.reshape(-1, self.feature_length * 8 * 8) # reshape data, then pass to dense classifier
## DENSE NETWORK TO CLASSIFY
x = self.relu(self.fc1(x)) # 4096 to 1024
x = self.relu(self.fc2(x)) # 1024 to 64
x = self.fc3(x) # 64 to 2
return x
```
Here, the loss function is defined as cross-entropy loss. The loss function is defined as cross-entropy loss. Cross-entropy is a measure from the field of information theory to calculate the difference between two probability distributions.
The optimizer, learning rate, and weight decay are set as tunable hyperparameters. Of note, one of the possible optimizers is the [Adam optimization algorithm](https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/ "See explanation here!"), a variant of stochastic gradient descent (SGD). Adam was introduced in @kingma_adam_2017 as follows:
> "We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method computes individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients."
Stochastic gradient descent maintains a single learning rate (termed alpha) for all weight updates and the learning rate does not change during training. When using Adam, a learning rate is maintained for each network parameter and separately adapted as learning unfolds. The other possible optimizers are SGD and root mean square propagation (RMSprop).
In defining the optimizer, establishing a small value for `weight_decay` enables L2, or ridge, regularization which penalizes large weights and counteracts model overfitting.
```{python}
def createLossAndOptimizer(net, trial):
optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "RMSprop", "SGD"])
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1e-1, log=True)
weight_decay = trial.suggest_float("weight_decay", 1e-5, 1e-1, log=True)
loss = torch.nn.CrossEntropyLoss()
optimizer = getattr(optim, optimizer_name)(net.parameters(), lr = learning_rate, weight_decay = weight_decay)
return(loss, optimizer, optimizer_name, learning_rate, weight_decay)
```
# Define Training Loop
When defining the training loop, early stopping (regularization used to avoid overfitting on the training data) is implemented based on the `EarlyStopping` class in `pytorchtool.py` from [`Bjarten/early-stopping-pytorch`](https://github.com/Bjarten/early-stopping-pytorch) (which in turn is inspired by the class of the same name from [`pytorch/ignite`](https://github.com/pytorch/ignite/blob/master/ignite/handlers/early_stopping.py). Early stopping `patience` is the the number of epochs to wait after the last time the validation loss improved before "terminating" the training loop. Note that the training loop is allowed to continue, but a checkpoint is created, and model parameters at the last checkpoint are loaded at the end of `trainNet()`.
The following function is called by `trainNet()`.
```{python}
def train_function(net, train_loader, optimizer, loss, epoch, verbose):
running_loss = 0.0
n_batches = len(train_loader)
print_every = n_batches // 5 # print 5 times total each epoch
start_time = time.time()
total_train_loss = 0
# batch iteration
for i, data in enumerate(train_loader, 0):
inputs, labels = data
# print(inputs, labels)
# perform backpropagation and Adam optimization
inputs, labels = Variable(togpu(inputs)), Variable(togpu(labels))
# clear gradients
optimizer.zero_grad()
# perform forward propagation
outputs = net(inputs)
# calculate cross-entropy loss
loss_size = loss(outputs, labels)
net.loss_list.append(loss_size.item())
# calculate gradients and update weights via Adam optimizer
loss_size.backward()
optimizer.step()
# print(loss_size.data.item())
running_loss += loss_size.data.item()
total_train_loss += loss_size.data.item()
# track the accuracy
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
net.acc_list.append(correct / total)
if (i % print_every == print_every - 1) and verbose:
time_delta = time.time() - start_time
print("Epoch {}, {:d}% \t Training Loss: {:.4f} \t Accuracy: {:.2f}% \t Took: {:.2f}s".format(epoch + 1, int(100 * (i + 1) / n_batches), running_loss / print_every, (correct / total) * 100, time_delta))
running_loss = 0.0
start_time = time.time()
```
This is the central function which implements the model training loop. The Optuna optimizer maximizes the out-of-sample area under the receiver operating characteristic (ROC) curve (AUC), which is determined by 3-fold cross-validation using the `scikit-learn` cross-validator within the 80% training set for each Optuna trial (i.e., Bayesian meta-optimization) [@pedregosa_scikit_2011].
```{python}
import sklearn.metrics as metrics
from statistics import mean
from itertools import chain
from pytorchtools import EarlyStopping
from sklearn.model_selection import KFold
# checkpoint_dir = results_dir + "Early Stopping\\"
checkpoint_dir = results_dir + "Early Stopping/"
def trainNet(trial, batch_size, n_epochs, patience, k_folds):
# print all of the hyperparameters of the training iteration:
print("\n===== HYPERPARAMETERS =====")
print("Trial Number: {}".format(trial.number))
print("Batch Size: ", batch_size)
print("Epochs: ", n_epochs)
print("Folds: ", k_folds)
print("=" * 27)
# concatenate original training and validation split
full_data = ConcatDataset([train_data, val_data])
# define the K-fold cross validator
kfold = KFold(n_splits = k_folds, shuffle = True)
# average max. validation AUC across k-folds
average_max_val_auc = []
# k-fold cross validation model evaluation
for fold, (train_idx, val_idx) in enumerate(kfold.split(full_data)):
# generate the model
net = togpu(MicrogliaCNN(trial)).double()
# define loss and optimizer
loss, optimizer, optimizer_name, learning_rate, weight_decay = createLossAndOptimizer(net, trial)
# print fold statement
print("\n>>> BEGIN FOLD #{}".format(fold + 1))
print("Optimizer: ", optimizer_name)
print("Learning Rate: ", learning_rate)
print("Weight Decay: ", weight_decay)
# sample elements randomly from a given list of ids, no replacement
train_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(val_idx)
# define train and validation data loaders
train_loader = DataLoader(full_data, batch_size = batch_size, sampler = train_sampler)
val_loader = DataLoader(full_data, batch_size = 32, sampler = val_sampler)
# initialize the early stopping object
early_stopping = EarlyStopping(patience = patience, verbose = True, path = checkpoint_dir + "checkpoint.pt")
# set start data
training_start_time = time.time()
min_val_loss = float('inf')
max_val_auc = 0
# epoch iteration
for epoch in range(n_epochs):
print("\n----- TRIAL #{} FOLD #{} EPOCH #{} -----".format(trial.number + 1, fold + 1, epoch + 1))
# set model to training mode
net.train()
# batch iteration
train_function(net, train_loader, optimizer, loss, epoch, verbose = False)
# set model to evaluation mode
net.eval()
val_true = []; val_score = [];
total_val_loss = 0
# validation set iteration
for inputs, labels in val_loader:
inputs, labels = Variable(togpu(inputs)), Variable(togpu(labels))
val_outputs = net(inputs)
val_loss_size = loss(val_outputs, labels)
total_val_loss += val_loss_size.data.item()
net.val_loss.append(val_loss_size.item())
val_total = labels.size(0)
_, val_predicted = torch.max(val_outputs.data, 1)
val_correct = (val_predicted == labels).sum().item()
net.val_acc.append(val_correct / val_total)
# for ROC calculation
val_ctrl_probs = [x[1] for x in F.softmax(val_outputs.data).tolist()]
val_score.append(val_ctrl_probs); val_true.append(labels.tolist())
# get validation accuracy
print("\nValidation Accuracy = {:.2f}%".format((val_correct / val_total) * 100))
# calculate AUC for this epoch
val_true = list(chain.from_iterable(val_true))
val_score = list(chain.from_iterable(val_score))
fpr, tpr, thresholds = metrics.roc_curve(y_true = val_true, y_score = val_score, pos_label = 1)
val_auc = metrics.auc(fpr, tpr)
net.epoch_val_auc.append(val_auc)
print("\nValidation AUC = {:.4f}".format(val_auc))
# calculate maximum validation AUC
if val_auc > max_val_auc:
print("New Best AUC: ({} --> {})".format(max_val_auc, val_auc))
max_val_auc = val_auc
# get validation loss for this epoch
val_loss = total_val_loss / len(val_loader)
net.epoch_val_loss.append(val_loss)
print("\nValidation Loss = {:.4f}".format(val_loss))
# calculate minimum validation loss
if val_loss < min_val_loss:
print("New Best Loss: ({} --> {})".format(min_val_loss, val_loss))
min_val_loss = val_loss
# early stopping based on validation loss
early_stopping(total_val_loss / len(val_loader), net)
if early_stopping.early_stop:
print("Early Stopping at Epoch {}".format(epoch + 1))
break
# print output
print("\n>>> COMPLETE FOLD #{}".format(fold + 1))
print("Training Finished, Took {:.2f}s".format(time.time() - training_start_time))
print("Minimum Validation Loss: {:.4f}".format(min_val_loss))
print("Maximum Validation AUC: {:.4f}\n".format(max_val_auc))
# append max. val AUC
average_max_val_auc.append(max_val_auc)
############################################################
# retrain model on full dataset
final_net = togpu(MicrogliaCNN(trial)).double()
# define loss and optimizer
loss, optimizer, optimizer_name, learning_rate, weight_decay = createLossAndOptimizer(final_net, trial)
# print statements
print("\n\n>>> FINAL MODEL FOR TRIAL #{}".format(trial.number + 1))
print("Optimizer: ", optimizer_name)
print("Learning Rate: ", learning_rate)
print("Weight Decay: ", weight_decay)
# sample elements randomly from full dataset
num_full = len(full_data); full_idx = list(range(num_full)); np.random.shuffle(full_idx)
full_sampler = SubsetRandomSampler(full_idx)
# define train and validation data loaders
full_loader = DataLoader(full_data, batch_size = batch_size, sampler = full_sampler)
# iterate over full dataset to train model
final_net.train()
for epoch in range(n_epochs):
print("\n----- TRIAL #{} FINAL MODEL EPOCH #{} -----".format(trial.number + 1, epoch + 1))
train_function(final_net, full_loader, optimizer, loss, epoch, verbose = True)
# calculate average validation AUC across folds
print("Maximum Validation AUCs:" + str(average_max_val_auc))
average_max_val_auc = mean(average_max_val_auc)
print("Average Max. Validation AUC: {:.4f}\n\n".format(average_max_val_auc))
# use validation AUC as score to maximize across Optuna trials
return(final_net, average_max_val_auc)
```
# Train Model
Here, we use `Optuna` to optimize the hyperparameters for training [@akiba_optuna_2019]. First, we define the `objective()` function, which returns the average validation AUC for any given trial with a combination of selected hyperparameters (as discussed above). This value is then used as feedback on the performance of the trial, and the `objective()` function is maximized using the multivariate tree-structured Parzen estimator algorithm [@bergstra_algorithms_2011]. The `trial` object is passed to various functions (define above) to tune hyperparameters.
```{python}
import optuna
import pickle
from optuna.samplers import TPESampler
param_dir = results_dir + "Hyperparameter Optimization/"
study_dir = results_dir + "Study Database/"
def objective(trial):
# start the training loop
model, max_val_auc = trainNet(trial, batch_size = 64, n_epochs = 30, patience = 10, k_folds = 3)
# save model for this loop
torch.save(model.state_dict(), param_dir + "microglia_cnn_{}.pt".format(trial.number))
f = open(param_dir + "accuracy_loss_{}.pkl".format(trial.number), "wb")
pickle.dump([model.acc_list, model.loss_list, model.val_acc, model.val_loss, model.epoch_val_loss, model.epoch_val_auc], f)
f.close()
return max_val_au
```
`Optuna` results are stored in a `SQL` database to preserve results between runs.
```{python}
import logging
import sys
# add stream handler of stdout to show the messages
optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout))
# create study
study_name = "microglia-study" # unique identifier of the study
storage_name = "sqlite:///{}.db".format(study_dir + study_name)
study = optuna.create_study(direction = "maximize", sampler = TPESampler(seed = 1234, multivariate = True), study_name = study_name, storage = storage_name, load_if_exists = True)
# optimize hyperparameters
study.optimize(objective, n_trials = 20, gc_after_trial = True)
```
After the `Optuna` hyperparameter optimization is complete, the hyperparamters of the best performing trial are retrieved.
```{python}
# get pruned and complete trials
pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
# print print study statistics
print("\nStudy Statistics:")
print("- Finished Trials: ", len(study.trials))
print("- Pruned Trials: ", len(pruned_trials))
print("- Complete Trials: ", len(complete_trials))
print("\nBest Trial:")
best_trial = study.best_trial
print("- Number: ", best_trial.number)
print("- Value: ", best_trial.value)
print("- Hyperparameters: ")
for key, value in best_trial.params.items():
print(" - {}: {}".format(key, value))
# save and view output
study_results = study.trials_dataframe(attrs=("number", "value", "params", "state"))
study_results.to_csv(results_dir + "Output/" + "{}.{}_{}.{}.{}_OptunaHistory.csv".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year))
```
A new CNN is then initialized with these hyperparameter values.
```{python}
# define CNN and load weights and parameters
CNN = togpu(MicrogliaCNN(best_trial)).double()
CNN.load_state_dict(torch.load(param_dir + "microglia_cnn_{}.pt".format(best_trial.number)))
# load accuracy and loss logs for training/validation
f = open(param_dir + "accuracy_loss_{}.pkl".format(best_trial.number), "rb")
[CNN.acc_list, CNN.loss_list, CNN.val_acc, CNN.val_loss, CNN.epoch_val_loss, CNN.epoch_val_auc] = pickle.load(f)
f.close()
```
Hyperparameter optimization progress is visualized below.
```{python}
import optuna.visualization.matplotlib as oviz
from datetime import datetime
time = datetime.now()
v1 = oviz.plot_param_importances(study)
v2 = oviz.plot_optimization_history(study)
v3 = oviz.plot_slice(study)
def fig_name(name):
return(results_dir + "Output/" + "{}.{}_{}.{}.{}_{}.pdf".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year, name))
v1.figure.savefig(fig_name("HyperparameterImportance"))
v2.figure.savefig(fig_name("OptimizationHistory"))
```
# Visualize Training
Plot the training accuracy, training loss, and validation loss from the best `Optuna` trial.
```{python}
import itertools
import math
from bokeh.plotting import figure, show
from bokeh.io import output_notebook, reset_output, export_png
from bokeh.models import LinearAxis, Range1d
len_loss = len(CNN.loss_list)
max_loss = max(CNN.loss_list)
if max_loss < 1:
max_loss = 1
# define figure
pname = "{}:{}, {}/{}/{} - Microglia CNN Results".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year)
p = figure(y_axis_label="Loss", x_axis_label="Training Iterations", width=1400, height=750, title=pname)
# range limits
p.x_range = Range1d(0, len_loss, bounds = (0, len_loss))
p.y_range = Range1d(0, 1, bounds = (0, max_loss)) # range from 0 to max_loss
# define extra axes
p.extra_x_ranges = {"Epochs": Range1d(start=0, end=30, bounds = (0, 30))}
p.extra_y_ranges = {"Accuracy": Range1d(start=0, end=100, bounds = (0, max_loss * 100))}
# add extra axes
p.add_layout(LinearAxis(y_range_name="Accuracy", axis_label="Accuracy (%)"), "right")
p.add_layout(LinearAxis(x_range_name="Epochs", axis_label="Epochs"), "above") # below
# add graphs
p.line(np.arange(len_loss), CNN.loss_list, line_alpha = 0.5, legend_label = "Training Loss")
p.line(np.arange(len_loss), np.array(CNN.acc_list) * 100, y_range_name="Accuracy", color="red", line_alpha = 0.5, legend_label = "Training Accuracy")
# specify options
p.legend.click_policy = "hide"
p.toolbar.active_drag = None
output_notebook()
show(p)
```
# Evaluate on Test Set
Define, then apply, a function to evaluate the model on test set images. Misclassified microglia in the hold-out test set can then be identified and plotted.
```{python}
from itertools import chain
def testNet(net, verbose = True):
cpuCNN = tocpu(CNN)
# initialize empty values
test_output = []; correct = 0; total = 0
# test the model
cpuCNN.eval()
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
# evaluate images
outputs = cpuCNN(images)
# get prediction label, probability
_, predicted = torch.max(outputs.data, 1)
probs = F.softmax(outputs.data).tolist()
ad_probs = [x[0] for x in probs]; ctrl_probs = [x[1] for x in probs]
# get and parse file name
fname = test_loader.dataset.samples[(i*20):((i*20)+len(images))]
fname = [x[0].split("\\").pop() for x in fname]
# update counter
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_output.append([fname, predicted.tolist(), labels.tolist(), ctrl_probs, ad_probs, torch.chunk(images, 20, 0)])
# calculate accuracy
test_acc = (correct / total) * 100
# parse output
test_output = [list(x) for x in zip(*test_output)]
test_output = [list(chain.from_iterable(x)) for x in test_output]
test_output = pd.DataFrame(test_output).transpose()
test_output.columns = ["File", "PredictedLabel", "TrueLabel", "ProbabilityCTRL", "ProbabilityAD", "Image"]
if verbose:
print("Accuracy on the {} Test Images: {}%".format(len(test_data), test_acc))
return(test_acc, test_output)
```
Apply the function on the independent test set.
```{python}
# test data
acc, dat = testNet(CNN)
# save and view output
dat.to_csv(results_dir + "Output/" + "{}.{}_{}.{}.{}_TestSetResults.csv".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year))
dat.head(10)
```
## Plot ROC Curve
```{python}
import sklearn.metrics as metrics
fpr, tpr, thresholds = metrics.roc_curve(y_true = dat.TrueLabel.to_list(), y_score = dat.ProbabilityCTRL.to_list(), pos_label = 1)
roc_auc = metrics.auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--'); plt.xlim([0, 1]); plt.ylim([0, 1])
plt.ylabel('True Positive Rate'); plt.xlabel('False Positive Rate')
rfname = results_dir + "Output/" + "{}.{}_{}.{}.{}_ROCCurve.pdf".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year)
plt.savefig(rfname, bbox_inches="tight")
print("AUC: " + str(roc_auc))
```
# Model Interpretability
Using the `captum` library for model interpretability in `PyTorch` (see CIFAR tutorial [here](https://captum.ai/tutorials/CIFAR_TorchVision_Interpret)) [@kokhlikyan_pytorch_2019].
First, define `attributeFeatures()`, which is a generic function that will be used for calling an attribute on the attribution algorithm defined in `input`. Then, choose a test set image at index `idx` and define `interpretMicroglia()`, which will apply the selected attribution algorithms on that image. The model (i.e., `cpuCNN`) should be set to `eval` mode from the prior chunk.
Within `interpretMicroglia()`, compute gradients with respect to the class of the test set image, then, apply the integrated gradients attribution algorithm on the test set image. Integrated Gradients computes the integral of the gradients of the output prediction with respect to the input image pixels. More details about integrated gradients can be found in the [original paper](https://arxiv.org/abs/1703.01365) [@sundararajan_axiomatic_2017].
Transpose the image and gradients for visualization purposes. Also, note that the classification label assumes that `test_data.class_to_idx` is `{'AD': 0, 'CTRL': 1}`.
```{python}
from captum.attr import Saliency
from captum.attr import IntegratedGradients
from captum.attr import GuidedGradCam
from captum.attr import visualization as viz
# get model
cpuCNN = tocpu(CNN).eval()
# define generic attribution function
def attributeFeatures(idx, algorithm, input, **kwargs):
cpuCNN.zero_grad()
tensor_attributions = algorithm.attribute(input, target = dat.TrueLabel[idx], **kwargs)
return tensor_attributions
# utility function
def scale(x):
return (x - np.min(x))/(np.max(x) - np.min(x))
# function for model interpretability
def interpretMicroglia(idx):
# select test image
input = dat.Image[idx]
input.requires_grad = True
# saliency
saliency = Saliency(cpuCNN)
grads = saliency.attribute(input, target = dat.TrueLabel[idx])
grads = np.transpose(grads.squeeze().cpu().detach().numpy(), (1, 2, 0))
# integrated gradients
ig = IntegratedGradients(cpuCNN)
attr_ig, delta_ig = attributeFeatures(idx, ig, input, baselines = input * 0, return_convergence_delta=True)
attr_ig = np.transpose(attr_ig.squeeze().cpu().detach().numpy(), (1, 2, 0))
# guided gradcam
gc = GuidedGradCam(cpuCNN, cpuCNN.conv4)
attr_gc = attributeFeatures(idx, gc, input)
attr_gc = np.transpose(attr_gc.squeeze().cpu().detach().numpy(), (1, 2, 0))
# scale image to 0-1 distribution and transpose for visualization
original = input.cpu().detach().numpy()[0]
original = np.array([scale(x) for x in original])
original = np.transpose(original, (1, 2, 0))
return(idx, original, grads, attr_ig, attr_gc)
```
Next, define a function to visualize results of attribution algorithms across all channels.
```{python}
import regex as re
marker = ["DAPI", "IBA1", "MHC2", "CD68", "TMEM119", "TSPO", "FTL"]
colormaps = ["Blues", "Greens", "Reds", "RdPu", "BuGn", "BuPu", "Oranges"]
# function to visualize attribution across channels
def visualizeAttribution(idx, original, grads, attr_ig, attr_gc):
# print predicted class, classification probability, and true class
classes = ("Alzheimer", "Control")
my_fname, my_pred, my_lab, my_ctrl, my_ad = dat.iloc[idx, 0:5]
my_pred = classes[my_pred]; my_lab = classes[my_lab]
# define plot
fig, axs = plt.subplots(nrows = 4, ncols = 8, figsize = (24, 15))
fig.tight_layout(h_pad = 2)
# parse filename
my_fname = my_fname.split("/")[11]
prse = my_fname.split("_")
sample = prse[1]; layer = re.sub("Layer", "", prse[2])
crop = re.sub("crop", "", prse[3])
lab = re.sub("(\\.tif|Microglia)", "", prse[4])
# annotation text
plt.figtext(x = 0.52, y = 0.24, s = r"$\bf{Sample:~}$" + sample + r"$\bf{~~~Layer:~}$" + layer + r"$\bf{~~~Crop:~}$" + crop + r"$\bf{~~~Number:~}$" + lab + "\n" + r"$\bf{Predicted:~}$" + my_pred + "\n" + r"$\bf{Truth:~}$" + my_lab + "\n" + r"$\bf{Control\ Probability:~}$" + str(round(my_ctrl*100, 4)) + "%\n" + r"$\bf{AD\ Probability:~}$" + str(round(my_ad*100, 4)) + "%\n" + r"$\bf{Index:~}$" + str(idx), fontsize = 18, linespacing = 2, ha = "left", va = "top")
for c in range(len(marker)):
# plot indexing
cl = [c]
x_idx = 0 if c < 4 else 4
y_idx = c % 4
# original image (with transforms)
_ = viz.visualize_image_attr(original[:, :, cl], original[:, :, cl], method = "heat_map", cmap = colormaps[c], title = r"$\bf{" + marker[c] + r"}$", plt_fig_axis = (fig, axs[y_idx, 0 + x_idx]), use_pyplot = False)
# saliency gradient
_ = viz.visualize_image_attr(grads[:, :, cl], original[:, :, cl], method = "masked_image", sign = "absolute_value", show_colorbar = True, title = marker[c] + " Gradient Magnitudes", plt_fig_axis = (fig, axs[y_idx, 1 + x_idx]), use_pyplot = False)
# integrated gradient
if attr_ig[:, :, cl].sum() != 0: # if no signal
_ = viz.visualize_image_attr(attr_ig[:, :, cl], original[:, :, cl], method = "blended_heat_map", alpha_overlay = 0.85, sign = "all", show_colorbar = True, title = marker[c] + " Integrated Gradients", plt_fig_axis = (fig, axs[y_idx, 2 + x_idx]), use_pyplot = False)
else:
axs[y_idx, 2 + x_idx].set_visible(False)
# guided gradcam
_ = viz.visualize_image_attr(attr_gc[:, :, cl], original[:, :, cl], method = "blended_heat_map", alpha_overlay = 0.85, sign = "absolute_value", show_colorbar = True, title = marker[c] + " Guided GradCAM", plt_fig_axis = (fig, axs[y_idx, 3 + x_idx]), use_pyplot = False)
# remove axes
for remove in range(4,8):
axs[3, remove].set_visible(False)
# save figure
plt.savefig(results_dir + "Model Interpretation/" + re.sub(".tif", "", my_fname) + "_Index" + str(idx) + ".pdf", bbox_inches="tight")
```
Identify microglia with extreme classification probabilities.
```{python}
top_n = 20
top_ad = dat.sort_values("ProbabilityAD", ascending = False).head(top_n).index
top_ctrl = dat.sort_values("ProbabilityCTRL", ascending = False).head(top_n).index
top_idx = top_ctrl.append(top_ad)
print("Top {} Alzheimer/Control Classifications:".format(top_n))
dat.iloc[top_idx]
```
Visualize attribution functions for these astrocytes with extreme classification probabilities.
```{python}
%%capture
for i in top_idx:
try:
visualizeAttribution(*interpretMicroglia(i))
except IndexError as e:
print("Failed to compute attribution for #" + str(i) + ".")
except AssertionError as e:
print("Failed to normalize #" + str(i) + ".")
```
# Save Notebook
```{python}
# use time object imported above for loss/accuracy plot
cname = base_dir + "Code/CNN/3 - Microglia CNN.ipynb"
fname = results_dir + "CNN Training/" + "{}.{}_{}.{}.{}_MicrogliaCNN.html".format(my_time.hour, my_time.minute, my_time.month, my_time.day, my_time.year)
cmd = 'jupyter nbconvert --to html ' + '"' + cname + '"' + ' --output ' + '"' + fname + '"'
```