forked from serrano-pozo-lab/glia-ihc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroi-segmentation.Rmd
454 lines (345 loc) · 13.9 KB
/
roi-segmentation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
---
title: "ROI Segmentation"
description: |
This ImageJ script segments the manually-defined ROIs from the multi-channel TIFFs.
author:
- first_name: "Ayush"
last_name: "Noori"
url: https://www.github.com/ayushnoori
affiliation: Massachusetts General Hospital
affiliation_url: https://www.serranopozolab.org
orcid_id: 0000-0003-1420-1236
output:
distill::distill_article:
toc: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(eval = FALSE)
```
# Setup
This script is written in the ImageJ Macro Language (IJM). For readability, the single macro has been divided into several sections here. First, the requisite directories, cell-type groups, and measurements are defined.
``` {.ijm .IJM}
macro "ROI Segmentation [m]" {
setBatchMode(true);
// define paths
dir = "<insert your directory here>";
dir2 = dir + "Results/2 - ROI Annotations/";
outdir = dir + "Data/3 - ROIs/";
getDateAndTime(year, month, dayOfWeek, dayOfMonth, hour, minute, second, msec);
MonthNames = newArray("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec");
print("MULTIPLEX IHC ROI EXTRACTION");
print("DATE: " + MonthNames[month] + ". " + dayOfMonth + ", " + year);
print("START TIME: " + hour + ":" + minute + ":" + second);
// define cell-type groups
celldirs = newArray("Astrocyte ROIs/", "Microglia ROIs/", "Vessel ROIs/", "Plaque ROIs/", "Tangle ROIs/");
Roi.setGroupNames("astrocyte,microglia,vessel,plaque,tangle");
// get input directory for final TIFF crops
input = getDirectory("Choose input data folder with full TIFF crops.");
// input = dir + "Data/1 - Test Crops/";
files = getFileList(input);
// Array.show(files);
// set measurements to be applied on ROIs
run("Set Measurements...", "area mean standard modal min centroid center perimeter bounding shape feret's integrated median skewness area_fraction stack display redirect=None decimal=3");
// open list of TIFF files which have annotations
run("Table... ", "open=[" + dir2 + "Annotated TIFFs.txt]");
Table.rename("Annotated TIFFs.txt", "TIFFs");
```
# Retrieve TIFFs
Next, the list of annotated TIFF files is retrieved and iterated over.
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// GET TIFF LIST AND OPEN FILES
////////////////////////////////////////////////////////////
tiffs = Table.getColumn("Annotated TIFFs", "TIFFs");
selectWindow("TIFFs");
run("Close");
// Array.show(tiffs);
for (f = 0; f < tiffs.length; f++) {
fname = tiffs[f];
print(""); // add new line
print("-------- " + f+1 + "/" + tiffs.length + ": " + fname + " --------");
open(input + fname + "_Reordered.tif");
Roi.remove; // remove active selection, if any
image = getTitle(); // get crop title
selectImage(image); // shift focus to the selected crop
// normalize with rolling ball filter
run("Subtract Background...", "rolling=200 stack");
```
# Background Subtraction
For each TIFF file, rolling ball background subtraction is applied with a radius of 200 pixels.
``` {.ijm .IJM}
// perform background subtraction with rolling ball filter
run("Subtract Background...", "rolling=200 stack");
```
# Define Metadata
The condition of each sample (i.e., CTRL or AD) is defined, and the pixel-to-micron resolution is extracted from the metadata.
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// CLASSIFY SAMPLE CONDITION
////////////////////////////////////////////////////////////
sample = split(fname, "_"); // sample condition classified again
sample = sample[0];
if (sample == "1190" || sample == "1301" || sample == "1619" || sample == "2169" || sample == "2191" || sample == "2250" || sample == "2274") {
condition = "CTRL";
} else {
condition = "AD";
}
// create output directory
output = outdir + condition + "/" + fname;
File.makeDirectory(output);
// print condition
print("Condition: " + condition);
// extract pixel to micron conversion which is preserved in TIFF metadata
info = getImageInfo();
res = substring(info, indexOf(info, "X Resolution: "), indexOf(info, "Y Resolution: "));
res = split(res, " ");
res = res[2];
run("Set Scale...", "distance=" + res + " known=1 pixel=1.000 unit=micron"); // set scale in pixels/micron
// print resolution
print("Resolution: " + res + " pixels per micron");
File.saveString(res, output + "/" + fname + "_Resolution.txt")
```
# Create ROIs
ROIs are created from the parsed VGG Image Annotator (VIA) annotations.
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// OPEN ROI LIST AND CREATE ROIS
////////////////////////////////////////////////////////////
// open parsed VIA annotations for this crop
run("Table... ", "open=[" + dir2 + fname + ".csv]");
cname = fname + " Coordinates";
Table.rename(fname + ".csv", cname);
selectWindow(cname);
// define ROI arrays from VIA annotations
X = Table.getColumn("X", cname);
Y = Table.getColumn("Y", cname);
width = Table.getColumn("Width", cname);
height = Table.getColumn("Height", cname);
group = Table.getColumn("Group", cname);
// define property arrays from VIA annotations
type = Table.getColumn("Type", cname);
quality = Table.getColumn("Quality", cname);
annotator = Table.getColumn("Annotator", cname);
// shift focus to image
selectWindow(image);
// setSlice(2); // change slice to membrane marker
// set counter for astrocytes and vessels
a = 0; m = 0; v = 0; p = 0; t = 0;
// iterate over annotated regions to create ROIs
for (i = 0; i < X.length; i++) {
makeRectangle(X[i], Y[i], width[i], height[i]);
roiManager("add");
roiManager("Select", i);
if(group[i] == "astrocyte") {
Roi.setGroup(236);
Roi.setProperty("Type", type[i]);
Roi.setProperty("Quality", quality[i]);
Roi.setProperty("Annotator", annotator[i]);
roiManager("update");
a = a + 1; roiManager("rename", "Astrocyte" + a);
}
if(group[i] == "microglia") {
Roi.setGroup(227);
Roi.setProperty("Type", type[i]);
Roi.setProperty("Quality", quality[i]);
Roi.setProperty("Annotator", annotator[i]);
roiManager("update");
m = m + 1; roiManager("rename", "Microglia" + m);
}
if(group[i] == "vessel") {
Roi.setGroup(87);
Roi.setProperty("Type", type[i]);
Roi.setProperty("Quality", quality[i]);
Roi.setProperty("Annotator", annotator[i]);
roiManager("update");
v = v + 1; roiManager("rename", "Vessel" + v);
}
if(group[i] == "plaque") {
Roi.setGroup(27);
Roi.setProperty("Type", type[i]);
Roi.setProperty("Quality", quality[i]);
Roi.setProperty("Annotator", annotator[i]);
roiManager("update");
p = p + 1; roiManager("rename", "Plaque" + p);
}
if(group[i] == "tangle") {
Roi.setGroup(114);
Roi.setProperty("Type", type[i]);
Roi.setProperty("Quality", quality[i]);
Roi.setProperty("Annotator", annotator[i]);
roiManager("update");
t = t + 1; roiManager("rename", "Tangle" + t);
}
}
print("# of Astrocytes: " + a);
print("# of Microglia: " + m);
print("# of Vessels: " + v);
print("# of Plaques: " + p);
print("# of Tangles: " + t);
```
# Save ROI Coordinates
Coordinates of each ROI are saved.
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// SAVE ROI COORDINATES
////////////////////////////////////////////////////////////
// save ROI coordinates to compare with ABETA plaques
// these coordinates are relative to entire crop
// ROI extraction only saves coordinates relative to smaller VIA annotation
roiManager("List");
rname = fname + " ROIs";
Table.rename("Overlay Elements of " + image, rname);
// create empty arrays
nROI = roiManager("Count");
property_type = newArray(nROI);
property_quality = newArray(nROI);
property_annotator = newArray(nROI);
// get ROI properties
for (k = 0; k < nROI; k++) {
roiManager("Select", k);
property_type[k] = Roi.getProperty("Type");
property_quality[k] = Roi.getProperty("Quality");
property_annotator[k] = Roi.getProperty("Annotator");
}
// add to Table
Table.setColumn("Type", property_type, rname);
Table.setColumn("Quality", property_quality, rname);
Table.setColumn("Annotator", property_annotator, rname);
// save coordinates
selectWindow(rname);
saveAs("Results", output + "/" + fname + "_ROIs.csv");
// wipe results
Table.reset(fname + "_ROIs.csv");
selectWindow(fname + "_ROIs.csv");
run("Close");
```
# ROI Segmentation
For each newly-created ROI, the sub-image is segmented from the TIFF file. After adaptive thresholding using Otsu's method, the mean gray intensity (MGI) of each channel is measured. Finally, each ROI is interpolated to a 64 x 64 image as input to the convolutional neural network (CNN).
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// ROI SEGMENTATION
////////////////////////////////////////////////////////////
// create ROI directories
dirA = output + "/" + celldirs[0];
dirM = output + "/" + celldirs[1];
dirV = output + "/" + celldirs[2];
dirP = output + "/" + celldirs[3];
dirT = output + "/" + celldirs[4];
File.makeDirectory(dirA); File.makeDirectory(dirA + "/ROIs");
File.makeDirectory(dirM); File.makeDirectory(dirM + "/ROIs");
File.makeDirectory(dirV); File.makeDirectory(dirV + "/ROIs");
File.makeDirectory(dirP); File.makeDirectory(dirP + "/ROIs");
File.makeDirectory(dirT); File.makeDirectory(dirT + "/ROIs");
// get total number of ROIs
nROI = roiManager("Count");
// show all ROIs
roiManager("show all with labels");
a = 0; m = 0; v = 0; p = 0; t = 0;
mycounter = 0;
for (k = 0; k < nROI; k++) {
// duplicate ROI
roiManager("Select", k);
if (Roi.getGroup() == 236) { cellname = "Astrocyte"; celldir = dirA; a = a + 1; mycounter = a; }
if (Roi.getGroup() == 227) { cellname = "Microglia"; celldir = dirM; m = m + 1; mycounter = m; }
if (Roi.getGroup() == 87) { cellname = "Vessel"; celldir = dirV; v = v + 1; mycounter = v; }
if (Roi.getGroup() == 27) { cellname = "Plaque"; celldir = dirP; p = p + 1; mycounter = p; }
if (Roi.getGroup() == 114) { cellname = "Tangle"; celldir = dirT; t = t + 1; mycounter = t; }
ROIname = cellname + mycounter;
run("Duplicate...", "title=" + ROIname + " duplicate");
////////////////////////////////////////////////////////////
///// CREATE INSIDE ROI AND REMOVE BACKGROUND
////////////////////////////////////////////////////////////
if (cellname == "Astrocyte" || cellname == "Vessel") {
run("Duplicate...", "title=MarkerMask duplicate channels=2"); // duplicate ALDH1L1
}
else if (cellname == "Microglia") {
run("Duplicate...", "title=MarkerMask duplicate channels=3"); // duplicate IBA1
} else if (cellname == "Plaque") {
run("Duplicate...", "title=MarkerMask duplicate channels=16"); // duplicate ABETA
} else {
run("Duplicate...", "title=MarkerMask duplicate channels=17"); // duplicate PHF1
}
// auto-threshold using Otsu method
run("Auto Threshold", "method=Otsu white");
run("Analyze Particles...", "include add stack");
selectWindow("MarkerMask");
close();
// create array to select only new ROIs
selectWindow(ROIname);
oldROIs = Array.getSequence(nROI);
newROIs = Array.getSequence(roiManager("Count"));
// ONLY if new ROIs have been added
if (roiManager("Count") > nROI) {
// delete preexisting ROI indices from new ROI array
for (r = 0; r < oldROIs.length; r++) {
newROIs = Array.deleteIndex(newROIs, 0);
}
// combine multiple ROIs if more than one was created
if(newROIs.length > 1) {
roiManager("select", newROIs);
roiManager("combine");
roiManager("add");
roiManager("select", newROIs);
roiManager("delete");
}
// clear outside of ROI
roiManager("Select", nROI);
roiManager("rename", cellname + mycounter + "_ROI");
// setBackgroundColor(255, 255, 255);
setBackgroundColor(0, 0, 0);
run("Clear Outside", "stack");
////////////////////////////////////////////////////////////
///// MEASURE AND SAVE ROI
////////////////////////////////////////////////////////////
// measure each channel based on new ROI
for (s = 1; s <= nSlices; s++) {
setSlice(s);
run("Measure");
}
// scale for CNN and save
run("Size...", "width=64 height=64 average interpolation=None"); // no interpolation keeps edge of ROI sharp
saveAs("Tiff", celldir + "/" + condition + "_" + fname + "_" + cellname + mycounter + ".tif"); // save in crop specific folder
// save ROI
roiManager("Select", nROI);
roiManager("save selected", celldir + "/ROIs/" + condition + "_" + fname + "_" + cellname + mycounter + ".roi")
roiManager("delete");
} else { // if no ROI was created
print("ROI #" + k + " NOT CREATED: " + cellname + " " + mycounter);
}
// close image window
close();
}
```
# Save Measurements
For each TIFF image, the ROI measurements are saved and the image is closed.
``` {.ijm .IJM}
////////////////////////////////////////////////////////////
///// SAVE AND CLOSE CROP
////////////////////////////////////////////////////////////
// update ROI manager GUI for output
roiManager("show all with labels");
// save results
saveAs("Results", output + "/" + fname + "_Measurements.csv");
// save ROIs to ZIP file
roiManager("Save", output + "/" + fname + "_ROIs.zip");
// save original image
saveAs("Tiff", output + "/" + fname + "_Crop.tif");
// clear all results
Table.reset("Results");
roiManager("reset");
// close VIA annotations
selectWindow(cname);
run("Close");
// close crop
selectWindow(fname + "_Crop.tif");
close();
}
selectWindow("Results");
run("Close")
print(""); // add new line
getDateAndTime(year, month, dayOfWeek, dayOfMonth, hour, minute, second, msec);
print("END TIME: " + hour + ":" + minute + ":" + second);
selectWindow("Log");
saveAs("text", outdir + "Log.txt"); // save in crop specific folder
}
```