-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPSem.v
1200 lines (990 loc) · 50.7 KB
/
PSem.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import ZF ZFcoc ZFuniv_real Sat.
Require Import GenLemmas AbsTheorySem.
Require Import SN_CC_Real SN_nat.
(*Instantiate the semantic of First Order Theory with Presburger*)
Module PSemSig <: AbsSemSig.
(*Presburger is the uni-sort theroy*)
Definition sort := Nat.
Lemma sort_not_kind : sort <> kind.
Proof. discriminate. Qed.
Lemma typ_sort : forall e, typ e sort kind.
Proof. apply typ_N. Qed.
Lemma sort_clsd :
(forall n k, eq_term (lift_rec n k sort) sort) /\
(forall t k, eq_term (subst_rec t k sort) sort).
Proof. split; intros; simpl; split; red; reflexivity. Qed.
Definition wf_clsd_env e := forall i j, val_ok e i j ->
exists j', val_ok e i j' /\ (forall n, closed_pure_term (j' n)).
Definition prf_T : term.
left.
exists (fun _ => lam props (fun x => lam x (fun y => y)))
(fun _ => Lc.Abs (Lc.Abs (Lc.Ref 0))).
do 2 red; intros. reflexivity.
do 2 red; intros. reflexivity.
red; intros. reflexivity.
red; intros. reflexivity.
Defined.
Lemma Tprf : forall i j,
[int prf_T i, tm prf_T j] \real prod props (fun x => prod x (fun _ => x)).
intros. simpl int; simpl tm.
apply rprod_intro_lam.
do 2 red; intros. apply lam_ext; [|do 2 red; intros]; trivial.
do 2 red; intros. apply prod_ext; [|do 2 red; intros]; trivial.
apply Lc.sn_abs. apply Lc.sn_var.
intros. unfold Lc.subst. simpl Lc.subst_rec.
apply rprod_intro_lam.
do 2 red; intros; trivial.
do 2 red; intros; reflexivity.
apply Lc.sn_var.
intros. unfold Lc.subst; simpl Lc.subst_rec.
rewrite Lc.lift0; trivial.
Qed.
Lemma FprfF : forall i j v,
(forall n : nat, closed_pure_term (j n)) ->
[int v i, tm v j] \real prod props (fun p => p) -> False.
intros i j v Hclsd Hv.
assert (forall S, inSAT (Lc.App (tm v j) (Lc.Abs (Lc.Ref 0))) S) as HF.
intros.
assert ([mkProp S, Lc.Abs (Lc.Ref 0)] \real props).
assert (mkProp S ∈ El props).
apply mkProp_intro.
split; trivial.
rewrite Real_sort; trivial. apply snSAT_intro; apply Lc.sn_abs; apply Lc.sn_var.
apply rprod_elim with (x:=mkProp S) (u:=Lc.Abs (Lc.Ref 0)) in Hv; trivial.
destruct Hv. rewrite Real_mkProp in H1; trivial.
unfold inX, mkProp at 2 in H0. rewrite El_def in H0.
rewrite cc_bot_nop in H0; [|apply singl_intro].
apply singl_elim in H0; trivial.
do 2 red; intros; trivial.
destruct (neutral_not_closed _ HF).
inversion_clear H.
apply tm_closed in H0. unfold closed_pure_term in Hclsd.
apply False_ind. apply H0. intros. apply Hclsd.
inversion_clear H0. inversion_clear H.
Qed.
Definition P1 := (lam (mkTY N cNAT) (fun x =>
natrec (prod props (fun p => prod p (fun p1 => p)))
(fun _ _ => prod props (fun p => p)) x)).
Lemma P1_real : [P1, Lc.K]\real prod (mkTY N cNAT) (fun _ : X => props).
assert (forall x, x ∈ N ->
natrec (prod props (fun p : set => prod p (fun _ : set => p)))
(fun _ _ : set => prod props (fun p : set => p)) x ∈ El props).
intros; change (El props) with ((fun _ => El props) x).
apply natrec_typ; [do 2 red; reflexivity|do 3 red; reflexivity|trivial| |intros].
apply impredicative_prod.
do 2 red; intros; apply prod_ext; [|do 2 red]; trivial.
intros; apply impredicative_prod; [do 2 red; reflexivity|trivial].
apply impredicative_prod; [do 2 red |]; trivial.
apply rprod_intro_lam.
do 2 red; intros; apply natrec_morph; [reflexivity|do 3 red; reflexivity|trivial].
do 2 red; reflexivity.
apply Lc.sn_abs; apply Lc.sn_var.
intros; destruct H0 as (Hx, Hu); unfold inX in Hx; rewrite El_def,eqNbot in Hx; split.
unfold inX; apply H; trivial.
unfold Lc.subst; simpl Lc.subst_rec. rewrite Real_sort; [clear H|apply H; trivial].
apply snSAT_intro; apply Lc.sn_abs; apply Lc.sn_lift; apply sat_sn in Hu; trivial.
Qed.
Definition P1t : term.
left. exists (fun _ => P1) (fun _ => Lc.K).
do 2 red; intros. reflexivity.
do 2 red; intros. reflexivity.
red; intros. reflexivity.
red; intros. reflexivity.
Defined.
Lemma P1_ZERO : app P1 zero == prod props (fun p => prod p (fun p1 => p)).
unfold P1. rewrite beta_eq.
apply natrec_0.
do 2 red; intros. apply natrec_morph; [reflexivity|do 3 red; intros; reflexivity|trivial].
red; rewrite El_def,eqNbot. apply zero_typ.
Qed.
Lemma P1_SUCC : forall n, n ∈ N -> app P1 (succ n) == prod props (fun p => p).
unfold P1; intros; rewrite beta_eq.
rewrite natrec_S; [reflexivity|do 3 red; reflexivity|trivial].
do 2 red; intros; apply natrec_morph; [reflexivity|do 3 red; reflexivity|trivial].
red; rewrite El_def,eqNbot; apply succ_typ; trivial.
Qed.
Definition P2 := (lam (mkTY N cNAT) (fun x =>
natrec (prod props (fun p => p))
(fun _ _ => prod props (fun p => prod p (fun p1 => p))) x)).
Lemma P2_real : [P2, Lc.K]\real prod (mkTY N cNAT) (fun _ : X => props).
assert (forall x, x ∈ N ->
natrec (prod props (fun p : set => p))
(fun _ _ : set => prod props (fun p : set => prod p (fun _ : set => p))) x ∈ El props).
intros; change (El props) with ((fun _ => El props) x).
apply natrec_typ; [do 2 red; reflexivity|do 3 red; reflexivity|trivial| |intros].
apply impredicative_prod; [do 2 red |]; trivial.
apply impredicative_prod; [do 2 red|]; intros.
apply prod_ext; [|do 2 red]; trivial.
apply impredicative_prod; [do 2 red; reflexivity|trivial].
apply rprod_intro_lam.
do 2 red; intros; apply natrec_morph; [reflexivity|do 3 red; reflexivity|trivial].
do 2 red; reflexivity.
apply Lc.sn_abs; apply Lc.sn_var.
intros; destruct H0 as (Hx, Hu); unfold inX in Hx; rewrite El_def,eqNbot in Hx; split.
unfold inX; apply H; trivial.
unfold Lc.subst; simpl Lc.subst_rec. rewrite Real_sort; [clear H|apply H; trivial].
apply snSAT_intro; apply Lc.sn_abs; apply Lc.sn_lift; apply sat_sn in Hu; trivial.
Qed.
Definition P2t : term.
left. exists (fun _ => P2) (fun _ => Lc.K).
do 2 red; intros. reflexivity.
do 2 red; intros. reflexivity.
red; intros. reflexivity.
red; intros. reflexivity.
Defined.
Lemma P2_SUCC : forall n, n ∈ N ->
app P2 (succ n) == prod props (fun p => prod p (fun p1 => p)).
intros; unfold P2; rewrite beta_eq.
rewrite natrec_S; [reflexivity|do 3 red; reflexivity|trivial].
do 2 red; intros. apply natrec_morph; [reflexivity|do 3 red; intros; reflexivity|trivial].
red; rewrite El_def,eqNbot. apply succ_typ; trivial.
Qed.
Lemma P2_ZERO : app P2 zero == prod props (fun p => p).
unfold P2; rewrite beta_eq.
apply natrec_0; do 3 red; reflexivity.
do 2 red; intros; apply natrec_morph; [reflexivity|do 3 red; reflexivity|trivial].
red; rewrite El_def,eqNbot; apply zero_typ.
Qed.
Definition P3 x0 := (lam (mkTY N cNAT) (fun x =>
natrec (prod props (fun p => p)) (fun n _ => app x0 n) x)).
Lemma P3_morph : forall x y, x == y -> P3 x == P3 y.
intros. unfold P3. apply lam_ext; [reflexivity|do 2 red; intros].
apply natrec_morph; [reflexivity| |trivial].
do 2 red; intros. rewrite H2; rewrite H; reflexivity.
Qed.
Definition P3t : term -> term.
intros P. left.
exists (fun i => P3 (int P i)) (fun j => tm P j).
do 3 red; intros. apply P3_morph; rewrite H; reflexivity.
do 2 red; intros. rewrite H. reflexivity.
destruct P. destruct i. simpl. apply itm_lift0.
red; intros. reflexivity.
destruct P. destruct i. simpl. apply itm_subst0.
red; intros. reflexivity.
Defined.
Lemma P3_real : forall x0 u,
[x0, u]\real prod (mkTY N cNAT) (fun _ : set => props) ->
[P3 x0, u]\real prod (mkTY N cNAT) (fun _ : X => props).
intros.
assert (forall x, x ∈ N ->
natrec (prod props (fun p : set => p))
(fun n _ : set => app x0 n) x ∈ El props).
intros; change (El props) with ((fun _ => El props) x).
apply natrec_typ; [do 2 red; reflexivity|do 3 red; intros; rewrite H1; reflexivity
|trivial| |intros].
apply impredicative_prod; [do 2 red |]; trivial.
specialize (inSAT_n k H1); intros H3. destruct H3 as (x1, (H3, _)).
apply rprod_elim with (x:=k) (u:=x1) in H; [|do 2 red; intros; reflexivity|].
destruct H as (H, _); unfold inX in H; trivial.
split; [unfold inX; rewrite El_def,eqNbot|]; trivial.
rewrite Real_def; auto.
intros; apply cNAT_morph; trivial.
apply rprod_intro_sn; [|do 2 red; reflexivity|apply real_sn in H; trivial|].
do 2 red; intros; apply natrec_morph; [reflexivity
|do 3 red; intros; rewrite H3; reflexivity|trivial].
intros. assert (x ∈ N).
destruct H1 as (H1, _). unfold inX in H1; rewrite El_def,eqNbot in H1; trivial.
apply rprod_elim with (x:=x) (u:=u0) in H; [apply H0 in H2|do 2 red; reflexivity|trivial].
split; [unfold inX|rewrite Real_sort; [apply real_sn in H|]]; trivial.
Qed.
Lemma P3_SUCC : forall n x0,
n ∈ N ->
app (P3 x0) (succ n) == app x0 n.
intros; unfold P3; rewrite beta_eq.
rewrite natrec_S; [reflexivity|do 3 red; intros; rewrite H0; reflexivity|trivial].
do 2 red; intros. apply natrec_morph;
[reflexivity|do 3 red; intros; rewrite H2; reflexivity|trivial].
red; rewrite El_def,eqNbot. apply succ_typ; trivial.
Qed.
Lemma eq_SUCC_eq : forall m n x y,
m ∈ N ->
n ∈ N ->
[x, y]\real prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 (succ n)) (fun _ : X => app x0 (succ m))) ->
[x, y]\real prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 n) (fun _ : X => app x0 m)).
intros m n x y Hm Hn HS.
assert (forall m n, m ∈ N -> n ∈ N ->
prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 n) (fun _ : X => app x0 m)) ∈ El props).
intros. apply impredicative_prod.
do 2 red; intros. apply prod_ext; [|do 2 red; intros]; rewrite H2; reflexivity.
intros; apply impredicative_prod.
do 2 red; intros; reflexivity.
apply prod_elim with (x:=m0) in H1; trivial.
do 2 red; intros; reflexivity.
rewrite El_def,eqNbot; trivial.
assert (prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 (succ n)) (fun _ : X => app x0 (succ m))) ∈ El props).
apply H; apply succ_typ; trivial.
assert (prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 n) (fun _ : X => app x0 m)) ∈ El props).
apply H; trivial.
(*rewrite El_props_def in H0, H1. destruct H0, H1.*)
assert ((lam (prod (mkTY N cNAT) (fun _ => props))
(fun x0 => lam (app x0 n) (fun x1 => app (app x (P3 x0)) x1))) ∈
El (prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x0 : X => prod (app x0 n) (fun _ : X => app x0 m)))).
apply prod_intro.
do 2 red; intros. apply lam_ext; [rewrite H3; reflexivity|do 2 red; intros; rewrite H5].
apply app_ext; [|reflexivity].
apply app_ext; [reflexivity|unfold P3].
apply lam_ext; [reflexivity|do 2 red; intros].
apply natrec_morph;
[reflexivity|do 2 red; intros; rewrite H3; rewrite H8; reflexivity|trivial].
do 2 red; intros. apply prod_ext; [|do 2 red; intros]; rewrite H3; reflexivity.
intros. apply prod_intro.
do 2 red; intros. rewrite H4; reflexivity.
do 2 red; intros. reflexivity.
intros. destruct HS as (HS, _); unfold inX in HS.
assert (P3 x0 ∈ El (prod (mkTY N cNAT) (fun _ : X => props))).
unfold P3. apply prod_intro.
do 2 red; intros.
apply natrec_morph; [reflexivity|do 3 red; intros; rewrite H6; reflexivity|trivial].
do 2 red; intros; reflexivity.
intros. change (El props) with ((fun _ => El props) x2). apply natrec_typ; intros.
do 2 red; intros; reflexivity.
do 3 red; intros. rewrite H5; reflexivity.
rewrite El_def,eqNbot in H4; trivial.
apply impredicative_prod; [do 2 red|]; trivial.
apply prod_elim with (x:=k) in H2;
[|do 2 red; intros; reflexivity|rewrite El_def]; auto.
apply prod_elim with (x:=(P3 x0)) in HS; [|do 2 red; intros|trivial].
2 : apply prod_ext; [|do 2 red; intros]; rewrite H6; reflexivity.
assert (El (prod (app (P3 x0) (succ n)) (fun _ : X => app (P3 x0) (succ m))) ==
El (prod (app x0 n) (fun _ : X => app x0 m))).
apply El_morph; apply prod_ext; [|do 2 red; intros]; rewrite P3_SUCC; trivial; reflexivity.
rewrite H5 in HS; clear H5.
apply prod_elim with (x:=x1) in HS; trivial.
do 2 red; intros; reflexivity.
assert (x == (lam (prod (mkTY N cNAT) (fun _ => props))
(fun x0 => lam (app x0 n) (fun x1 => app (app x (P3 x0)) x1)))).
destruct HS as (HS, _); unfold inX in H1.
rewrite El_props_true with (1:=H0) in HS.
rewrite El_props_true with (1:=H1) in H2.
apply singl_elim in HS; apply singl_elim in H2.
rewrite HS,H2; reflexivity.
assert ([lam (prod (mkTY N cNAT) (fun _ : set => props))
(fun x0 : set => lam (app x0 n) (fun x1 => app (app x (P3 x0)) x1)), y]\real
prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x2 : X => prod (app x2 n) (fun _ : X => app x2 m)) ->
[x, y]\real prod (prod (mkTY N cNAT) (fun _ : X => props))
(fun x2 : X => prod (app x2 n) (fun _ : X => app x2 m))).
apply real_morph; [trivial| |]; reflexivity.
apply H4. clear H0 H H1 H2 H3 H4.
apply rprod_intro_sn.
do 2 red; intros. apply lam_ext; [rewrite H0; reflexivity|do 2 red; intros].
apply app_ext; trivial.
apply app_ext; [reflexivity|].
unfold P3. apply lam_ext; [reflexivity|do 2 red; intros].
apply natrec_morph; [reflexivity|do 3 red; intros; rewrite H0, H5; reflexivity|trivial].
do 2 red; intros. apply prod_ext; [|do 2 red; intros]; rewrite H0; reflexivity.
apply real_sn in HS; trivial.
intros. apply rprod_intro_sn.
do 2 red; intros. rewrite H1; reflexivity.
do 2 red; intros. reflexivity.
apply rprod_elim with (3:=H) in HS.
apply real_sn in HS; trivial.
do 2 red; intros. apply prod_ext; [|do 2 red; intros]; rewrite H1; reflexivity.
intros. apply rprod_elim with (x:=P3 x0) (u:=u) in HS; [| |apply P3_real; trivial].
2 : do 2 red; intros; apply prod_ext; [|do 2 red; intros]; rewrite H2; reflexivity.
assert ([app x (P3 x0), GenRealSN.Lc.App y u]\real
prod (app (P3 x0) (succ n)) (fun _ : X => app (P3 x0) (succ m)) ->
[app x (P3 x0), GenRealSN.Lc.App y u]\real
prod (app x0 n) (fun _ : X => app x0 m)).
apply real_morph; [reflexivity| |reflexivity].
apply prod_ext; [|do 2 red; intros]; rewrite <- P3_SUCC; trivial; reflexivity.
apply H1 in HS. clear H1.
apply rprod_elim with (x:=x1) (u:=u0) in HS; [|do 2 red; reflexivity|]; trivial.
Qed.
Lemma PredVary : forall e x y i j,
wf_clsd_env e ->
typ e x sort ->
typ e y sort ->
val_ok e i j ->
(exists j', val_ok e i j' /\ (forall n, closed_pure_term (j' n)) /\
(exists P, P <> kind /\ [int P i, tm P j'] \real int (Prod sort prop) i /\
exists u, [int u i, tm u j'] \real (app (int P i) (int x i)) /\
((exists v, [int v i, tm v j'] \real (app (int P i) (int y i))) ->
int x i == int y i))).
intros e x y i j' Hclsd Hx Hy Hok'.
apply Hclsd in Hok'. clear Hclsd j'.
destruct Hok' as (j, (Hok, Hclsd)).
exists j; split; [|split]; trivial.
apply red_typ with (1:=Hok) in Hx; [|discriminate].
destruct Hx as (_, (Hx, _)); unfold inX in Hx; simpl in Hx; rewrite El_def,eqNbot in Hx.
apply red_typ with (1:=Hok) in Hy; [|discriminate].
destruct Hy as (_, (Hy, _)); unfold inX in Hy; simpl in Hy; rewrite El_def,eqNbot in Hy.
set (int_x := int x i) in *. clearbody int_x.
set (int_y := int y i) in *. clearbody int_y.
clear x y e Hok.
revert int_y Hy. pattern int_x; apply N_ind; trivial; intros.
apply H1 in Hy; clear H1. destruct Hy as (P, (HSP, (HP, (u, (Hu, Hv))))).
exists P; split; [|split]; trivial.
exists u; split; rewrite <- H0; trivial.
exists P1t. split; [discriminate|split].
simpl int; simpl tm. apply P1_real.
exists prf_T. simpl int; simpl tm.
rewrite P1_ZERO. split; [apply Tprf with (i:=i) (j:=j)|].
pattern int_y; apply N_ind; [intros|reflexivity|intros|trivial].
rewrite H0 in H1; apply H1.
destruct H2 as (v, Hv); exists v; rewrite H0; trivial.
destruct H1 as (v, HF). rewrite P1_SUCC in HF; trivial.
apply FprfF in HF; trivial. contradiction.
pattern int_y; apply N_ind; trivial; intros.
destruct H3 as (P, (HSP, (HP, (u, (Hu, Hv))))).
exists P; split; [|split]; trivial.
exists u; split; trivial; intros.
rewrite <- H2; apply Hv. destruct H3 as (v, H3); exists v; rewrite H2; trivial.
exists P2t. split; [discriminate|split].
simpl int; simpl tm; apply P2_real; trivial.
exists prf_T. simpl int; simpl tm.
rewrite P2_SUCC; trivial.
split; [apply Tprf with (i:=i) (j:=j)|].
intros. destruct H1 as (v, Hv). rewrite P2_ZERO in Hv.
apply FprfF in Hv; [contradiction|trivial].
specialize H0 with (1:=H1).
destruct H0 as (P, (HSP, (HP, (u, (Hu, Hv))))).
exists (P3t P). split; [discriminate|split].
simpl int; simpl tm. apply P3_real; trivial.
exists u; split; [simpl int; rewrite P3_SUCC; trivial|].
intros. destruct H0 as (v, Hv').
simpl int in Hv'; rewrite P3_SUCC in Hv'; trivial.
assert (n == n0).
apply Hv; exists v; trivial.
rewrite H0; reflexivity.
Qed.
End PSemSig.
(************************************************************************************)
(*Semantic of axioms*)
(************************************************************************************)
Module PSemAx <: SemanticAx PSemSig.
Include SemLogic PSemSig.
Lemma typ_S1 : forall e n,
typ e n Nat ->
typ e (App Succ n) Nat.
intros e n Hn.
setoid_replace Nat with (subst n Nat) using relation eq_term;
[|simpl; split; red; reflexivity].
apply typ_app with (V:=Nat); [trivial|apply typ_S|discriminate|discriminate].
Qed.
Lemma int_S : forall n i, int n i ∈ N ->
int (App Succ n) i == succ (int n i).
intros; simpl.
rewrite beta_eq; [reflexivity| |red;rewrite El_def,eqNbot; trivial].
do 2 red; intros; rewrite H1; reflexivity.
Qed.
Definition Add := Abs Nat (Abs Nat (NatRec (Ref 1) (Abs Nat Succ) (Ref 0))).
Lemma typ_Add : forall e, typ e Add (Prod Nat (Prod Nat (lift 2 Nat))).
intros.
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_abs; [left; apply typ_N| |discriminate].
assert (forall n e, typ e n Nat ->
eq_typ e (App (Abs Nat Nat) n) Nat).
intros. setoid_replace Nat with (subst n Nat) using relation eq_term at 3;
[|simpl; split; red; reflexivity].
apply eq_typ_beta; [apply refl|apply refl|trivial|discriminate].
setoid_replace (lift 2 Nat) with Nat using relation eq_term;
[|simpl; split; red; reflexivity].
apply typ_conv with (T := App (Abs Nat Nat) (Ref 0)); [|apply H|discriminate|discriminate].
apply typ_Nrect.
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply typ_conv with (T:=Nat); [| |discriminate|discriminate].
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply sym. apply H. apply typ_0.
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_conv with (T:=Prod Nat (lift 1 Nat)); [apply typ_S| |discriminate|discriminate].
apply sym. apply eq_typ_prod; [| |discriminate].
unfold lift. rewrite red_lift_abs.
setoid_replace (lift_rec 1 0 Nat) with Nat using relation eq_term;
[apply H|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 4;
[apply typ_var; trivial|simpl; split; red; reflexivity].
unfold lift at 2 3. rewrite red_lift_abs.
setoid_replace (lift_rec 1 0 Nat) with Nat using relation eq_term;
[apply H; apply typ_S1|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 6;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
Qed.
Lemma typ_Add2 : forall e m n,
typ e m Nat ->
typ e n Nat ->
typ e (App (App Add m) n) Nat.
intros e m n Hm Hn.
setoid_replace Nat with (subst n Nat) using relation eq_term;
[|simpl; split; red; reflexivity].
apply typ_app with (V:=Nat); [trivial| |discriminate|discriminate].
setoid_replace (Prod Nat Nat) with (subst m (Prod Nat (lift 2 Nat))) using relation eq_term;
[|simpl; split; red; reflexivity].
apply typ_app with (V:=Nat); [trivial|apply typ_Add|discriminate|discriminate].
Qed.
Lemma succ_m2 : morph2 (fun _ => succ).
intros _ _ _; apply succ_morph.
Qed.
Hint Resolve succ_m2.
Lemma int_Add : forall n m i mm nn,
int m i ∈ N ->
int n i ∈ N ->
int m i == mm ->
int n i == nn ->
int (App (App Add m) n) i == natrec mm (fun _ => succ) nn.
intros n m i mm nn Him Hin Hm Hn.
replace (int (App (App Add m) n) i) with
(app (app (lam (mkTY N cNAT) (fun x => lam (mkTY N cNAT) (fun y =>
(natrec x (fun p q =>
app (app (lam (mkTY N cNAT) (fun _ => lam (mkTY N cNAT) succ)) p) q) y))))
(int m i)) (int n i)) by reflexivity.
rewrite beta_eq; [
|do 2 red; intros; apply lam_ext; [reflexivity|do 2 red; intros; apply natrec_morph; [|
do 3 red; intros; rewrite H3, H4; reflexivity|]; trivial]
|red;rewrite El_def,eqNbot; trivial].
rewrite beta_eq; [
|do 2 red; intros; apply natrec_morph; [reflexivity
|do 3 red; intros; rewrite H1, H2; reflexivity|trivial]
|red;rewrite El_def,eqNbot; trivial].
assert (natrec (int m i) (fun _ : set => succ) (int n i) ==
natrec mm (fun _ : set => succ) nn).
apply natrec_morph; [|do 3 red; intros; rewrite H0; reflexivity|]; trivial.
rewrite <- H; clear H.
pattern (int n i); apply N_ind; [|repeat rewrite natrec_0; auto; try reflexivity| |trivial]; intros.
assert (natrec (int m i) (fun _ : set => succ) n0 ==
natrec (int m i) (fun _ : set => succ) n').
apply natrec_morph; [reflexivity|do 3 red; intros; rewrite H3; reflexivity|trivial].
rewrite H2 in H1; rewrite <- H1; clear H2.
apply natrec_morph; [reflexivity
|do 3 red; intros; apply app_ext; [apply app_ext; [reflexivity|]|]; trivial
|rewrite H0; reflexivity].
rewrite natrec_S; [|do 3 red; intros; rewrite H1, H2; reflexivity|trivial].
rewrite natrec_S; [|do 3 red; intros; rewrite H2; reflexivity|trivial].
rewrite beta_eq; [rewrite H0|do 2 red; reflexivity|red;rewrite El_def,eqNbot; trivial].
rewrite beta_eq; [reflexivity|do 2 red; intros; rewrite H2; reflexivity
|red;rewrite El_def,eqNbot; change N with ((fun _ => N) n0)].
apply natrec_typ; [do 2 red; reflexivity|do 3 red; intros; rewrite H2; reflexivity| |
|intros; apply succ_typ]; trivial.
Qed.
(*Axiom1 : ~ S n = 0*)
Definition ax1_aux := Abs Nat (NatRec True_symb (Abs Nat (Abs prop False_symb)) (Ref 0)).
Lemma P_ax1_aux : forall e, typ e ax1_aux (Prod Nat prop).
intros e. unfold ax1_aux.
assert (forall n e, typ e n Nat ->
eq_typ e (App (Abs Nat prop) n) prop).
intros.
setoid_replace prop with (subst n prop) using relation eq_term at 2;
[apply eq_typ_beta; [apply refl|apply refl|trivial|discriminate]
|simpl; split; red; reflexivity].
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_conv with (T := App (Abs Nat prop) (Ref 0));
[|apply H; setoid_replace Nat with (lift 1 Nat) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity]
|discriminate|discriminate].
apply typ_Nrect.
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply typ_conv with (T:=prop); [apply True_symb_typ|apply sym; apply H; apply typ_0
|discriminate|discriminate].
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_conv with (T:=Prod prop prop); [| |discriminate|discriminate].
apply typ_abs; [left; apply typ_prop|apply False_symb_typ|discriminate].
apply sym; apply eq_typ_prod; [| |discriminate].
unfold lift; rewrite red_lift_abs.
setoid_replace (lift_rec 1 0 Nat) with Nat using relation eq_term;
[|simpl; split; red; reflexivity].
setoid_replace (lift_rec 1 1 prop) with prop using relation eq_term;
[apply H|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
unfold lift at 2; rewrite red_lift_abs.
setoid_replace (lift_rec 2 0 Nat) with Nat using relation eq_term;
[|simpl; split; red; reflexivity].
setoid_replace (lift_rec 2 1 prop) with prop using relation eq_term;
[apply H; apply typ_S1|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 4;
[apply typ_var; trivial|simpl; split; red; reflexivity].
Qed.
Lemma ax1_aux_0 : forall e, eq_typ e True_symb (App ax1_aux Zero).
red; intros e i j Hok; simpl.
rewrite beta_eq; [rewrite natrec_0; auto; try reflexivity| |red;rewrite El_def,eqNbot; apply zero_typ].
do 2 red; intros. apply natrec_morph; [reflexivity| |trivial].
do 3 red; intros. apply app_ext; [apply app_ext|]; trivial.
apply lam_ext; [|do 2 red; intros]; reflexivity.
Qed.
Lemma ax1_aux_S : forall e n, typ e n Nat ->
eq_typ e False_symb (App ax1_aux (App Succ n)).
red; intros e n Hn i j Hok.
apply red_typ with (1:=Hok) in Hn; [destruct Hn as (_, (Hn, _))|discriminate].
unfold inX in Hn; rewrite ElNat_eq in Hn.
generalize (True_symb_typ e); intros HT.
apply red_typ with (1:=Hok) in HT; [destruct HT as (_, (HT, _))|discriminate].
unfold inX in HT; simpl int in HT.
generalize (False_symb_typ e); intros HF.
apply red_typ with (1:=Hok) in HF; [destruct HF as (_, (HF, _))|discriminate].
unfold inX in HF; simpl int in HF.
replace (int (App ax1_aux (App Succ n)) i) with
(app (lam (mkTY N cNAT) (fun x => natrec (int True_symb (V.cons x i)) (fun p q =>
app (app (lam (mkTY N cNAT) (fun y => lam props (fun z =>
(int False_symb (V.cons z (V.cons y (V.cons x i))))))) p) q) x))
(int (App Succ n) i)) by reflexivity.
rewrite int_S; [unfold ax1_aux; simpl int|trivial].
rewrite beta_eq; [
|do 2 red; intros; apply natrec_morph; [reflexivity
|do 3 red; intros; apply app_ext; [apply app_ext; [reflexivity|]|]|]
|red; rewrite El_def,eqNbot; apply succ_typ]; trivial.
rewrite natrec_S; [
|do 3 red; intros; apply app_ext; [apply app_ext; [reflexivity|]|]
|]; trivial.
rewrite beta_eq;[|do 2 red; reflexivity|red;rewrite El_def,eqNbot; trivial].
rewrite beta_eq; [reflexivity|do 2 red; reflexivity
|change (El props) with ((fun _ => El props) (int n i))].
apply natrec_typ with (P:=fun _ => El props); [do 2 red; reflexivity
|do 3 red; intros; apply app_ext; [apply app_ext; [reflexivity|]|]; trivial
| | |intros]; trivial.
rewrite beta_eq; [|do 2 red; reflexivity|red;rewrite El_def,eqNbot; trivial].
rewrite beta_eq; [|do 2 red; reflexivity|]; trivial.
Qed.
Definition ax1 := forall e, exists t,
typ e t (Fall (Neg (EQ_term Zero (App (App Add (Ref 0)) (App Succ Zero))))).
Lemma P_ax_intro1 : ax1.
unfold ax1. intros e.
generalize (True_symb_intro (EQ_term Zero (App (App Add (Ref 0)) (App Succ Zero))::Nat::e)).
intros Ht; destruct Ht as (t, Ht).
exists (Abs Nat (Abs (EQ_term Zero (App (App Add (Ref 0)) (App Succ Zero)))
(App (App (Ref 0) ax1_aux) t))).
apply typ_abs; [left; apply typ_N|unfold Neg|discriminate].
apply Impl_intro; [|discriminate|].
apply EQ_term_typ; [apply typ_0|apply typ_Add2; [|apply typ_S1; apply typ_0]].
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace (lift 1 False_symb) with (subst t False_symb) using relation eq_term by
(simpl; split; red; reflexivity).
apply typ_app with (V:=True_symb); [trivial|clear Ht|discriminate|discriminate].
apply typ_conv with (T:=(subst ax1_aux (Prod (App (Ref 0) (lift 2 Zero))
(App (Ref 1) (lift 3 (App (App Add (Ref 0)) (App Succ Zero))))))); [
| |discriminate|discriminate].
apply typ_app with (V:=(Prod Nat prop)); [apply P_ax1_aux| |discriminate|discriminate].
setoid_replace ((Prod (Prod Nat prop) (Prod (App (Ref 0) (lift 2 Zero))
(App (Ref 1) (lift 3 (App (App Add (Ref 0)) (App Succ Zero))))))) with
(lift 1 ((Prod (Prod Nat prop) (Prod (App (Ref 0) (lift 1 Zero))
(App (Ref 1) (lift 2 (App (App Add (Ref 0)) (App Succ Zero))))))))
using relation eq_term; [apply typ_var; trivial
|unfold lift; do 3 rewrite red_lift_prod; do 11 rewrite red_lift_app].
rewrite eq_term_lift_ref_fv; [simpl plus|omega].
rewrite eq_term_lift_ref_bd; [|omega].
rewrite eq_term_lift_ref_bd; [|omega].
rewrite eq_term_lift_ref_fv; [simpl plus|omega].
rewrite eq_term_lift_ref_fv; [simpl plus|omega].
rewrite lift_rec_acc; [simpl plus|omega].
rewrite lift_rec_acc; [simpl plus|omega].
rewrite lift_rec_acc; [simpl plus|omega].
rewrite lift_rec_acc; [simpl plus|omega].
fold (lift 3 Add). fold (lift 3 Succ). fold (lift 3 Zero).
apply Prod_morph; [apply Prod_morph; simpl; split; red|]; reflexivity.
unfold subst. rewrite red_sigma_prod. do 2 rewrite red_sigma_app.
rewrite red_sigma_var_eq; [rewrite lift0|discriminate].
setoid_replace ((subst_rec ax1_aux 0 (lift 2 Zero))) with Zero using relation eq_term;
[|simpl; split; red; reflexivity].
rewrite red_sigma_var_eq; [|discriminate].
rewrite subst_lift_lt; [|omega].
apply eq_typ_prod; [rewrite ax1_aux_0; apply refl| |discriminate].
rewrite ax1_aux_S with (n:=(Ref 2)).
apply eq_typ_app.
unfold lift. unfold ax1_aux. rewrite red_lift_abs.
apply eq_typ_abs; [| |discriminate].
setoid_replace (lift_rec 1 0 Nat) with Nat using relation eq_term;
[apply refl|simpl; split; red; reflexivity].
red; intros; simpl. apply natrec_morph; [reflexivity| |reflexivity].
do 3 red; intros. apply app_ext; [apply app_ext; [reflexivity|]|]; trivial.
red; intros; unfold lift. red in H.
assert (nth_error (App ax1_aux Zero :: Prod (Prod Nat prop)
(Prod (App (Ref 0) (lift 1 Zero)) (App (Ref 1)
(lift 2 (App (App Add (Ref 0)) (App Succ Zero))))) :: Nat :: e) 2 =
value Nat) by trivial.
specialize H with (1:=H0); clear H0.
apply in_int_not_kind in H; [|discriminate].
destruct H as (H, _); unfold inX in H; simpl in H. rewrite El_def,eqNbot in H.
rewrite int_lift_rec_eq.
assert (int (Ref 0) (V.lams 0 (V.shift 2) i) == i 2) by
(unfold V.lams, V.shift; simpl; reflexivity).
assert (int (App Succ Zero) (V.lams 0 (V.shift 2) i) == succ zero) by
(rewrite int_S; simpl; [reflexivity|apply zero_typ]).
rewrite int_Add with (3:=H0) (4:=H1);
[|rewrite H0; trivial|rewrite H1; apply succ_typ; apply zero_typ].
rewrite natrec_S; [rewrite natrec_0; trivial; try (rewrite int_S; [reflexivity|trivial])
|do 3 red; intros; rewrite H3; reflexivity|apply zero_typ].
setoid_replace Nat with (lift 3 Nat) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity].
Qed.
(*Axiom2 : x + 1 = y + 1 -> x = y*)
Definition ax2 := forall e, exists t, typ e t (Fall (Fall (Impl
(EQ_term (App (App Add (Ref 0)) (App Succ Zero)) (App (App Add (Ref 1)) (App Succ Zero)))
(EQ_term (Ref 0) (Ref 1))))).
Lemma P_ax_intro2 : ax2.
unfold ax2; intros e.
exists (Abs Nat (Abs Nat (Abs (EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero))) (Ref 0)))).
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_abs; [left; apply typ_N| |discriminate].
apply Impl_intro; [|discriminate|].
apply EQ_term_typ.
apply typ_Add2; [|apply typ_S1; apply typ_0].
setoid_replace Nat with (lift 1 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply typ_Add2; [|apply typ_S1; apply typ_0].
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace (lift 1 (EQ_term (Ref 0) (Ref 1))) with
(EQ_term (Ref 1) (Ref 2)) using relation eq_term; [
|unfold EQ_term, lift; repeat rewrite red_lift_prod; repeat rewrite red_lift_app;
rewrite eq_term_lift_ref_bd; [|omega]; rewrite lift_rec_acc; [simpl plus|omega];
rewrite eq_term_lift_ref_fv; [simpl plus|omega]; rewrite eq_term_lift_ref_bd; [|omega];
rewrite lift_rec_acc; [simpl plus|omega];
repeat (rewrite eq_term_lift_ref_fv; [simpl plus|omega]);
apply Prod_morph; [apply Prod_morph; simpl; split; red|]; reflexivity].
red; intros. red in H.
assert (nth_error (EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero)) :: Nat :: Nat :: e) 0 = value (
EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero)))) by trivial.
assert (nth_error (EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero)) :: Nat :: Nat :: e) 1 = value Nat) by trivial.
assert (nth_error (EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero)) :: Nat :: Nat :: e) 2 = value Nat) by trivial.
apply H in H0. apply in_int_not_kind in H0; [|discriminate].
apply H in H1. apply in_int_not_kind in H1; [destruct H1 as (H1, _)|discriminate].
unfold inX in H1; simpl in H1; rewrite El_def,eqNbot in H1.
apply H in H2. apply in_int_not_kind in H2; [destruct H2 as (H2, _)|discriminate].
unfold inX in H2; simpl in H2; rewrite El_def,eqNbot in H2.
apply in_int_intro; [discriminate|discriminate|clear e H].
assert ([i 0, j 0]\real (prod (prod (mkTY N cNAT) (fun _ => props)) (fun x =>
prod (app x (i 1)) (fun y => app x (i 2)))) ->
[int (Ref 0) i, tm (Ref 0) j]\real int (EQ_term (Ref 1) (Ref 2)) i).
apply real_morph; simpl; reflexivity.
apply H; clear H.
assert ([int (Ref 0) i, tm (Ref 0) j] \real int (lift 1
(EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero)))) i ->
([int (Ref 0) i, tm (Ref 0) j] \real int
(EQ_term (App (App Add (Ref 0)) (App Succ Zero))
(App (App Add (Ref 1)) (App Succ Zero))) (V.shift 1 i))).
unfold lift; rewrite int_lift_rec_eq. rewrite V.lams0; trivial.
specialize H with (1:=H0); clear H0.
replace (int (Prod (Prod Nat prop)
(Prod (App (Ref 0) (lift 1 (App (App Add (Ref 0)) (App Succ Zero))))
(App (Ref 1) (lift 2 (App (App Add (Ref 1)) (App Succ Zero)))))) (V.shift 1 i)) with
(prod (prod (mkTY N cNAT) (fun _ => props)) (fun x =>
prod (app x (int
(lift 1 (App (App Add (Ref 0)) (App Succ Zero))) (V.cons x (V.shift 1 i)))) (fun y =>
app x (int
(lift 2 (App (App Add (Ref 1)) (App Succ Zero)))
(V.cons y (V.cons x (V.shift 1 i))))))) in H by reflexivity.
assert ([int (Ref 0) i, tm (Ref 0) j] \real
prod (prod (mkTY N cNAT) (fun _ : set => props)) (fun x : set =>
prod (app x (int
(lift 1 (App (App Add (Ref 0)) (App Succ Zero))) (V.cons x (V.shift 1 i)) ))
(fun y : set =>
app x (int
(lift 2 (App (App Add (Ref 1)) (App Succ Zero)))
(V.cons y (V.cons x (V.shift 1 i)))))) ->
[i 0, j 0] \real (prod (prod (mkTY N cNAT) (fun _ => props)) (fun x =>
prod (app x (succ (i 1))) (fun y => app x (succ (i 2)))))).
apply real_morph; [reflexivity| |reflexivity].
apply prod_ext; [reflexivity|do 2 red; intros].
apply prod_ext; [|do 2 red; intros].
rewrite int_cons_lift_eq.
assert (int (Ref 0) (V.shift 1 i) == i 1) by reflexivity.
assert (int (App Succ Zero) (V.shift 1 i) == succ zero) by (apply int_S; apply zero_typ).
rewrite int_Add with (3:=H4) (4:=H5); [
|rewrite H4; trivial|rewrite H5; apply succ_typ; apply zero_typ].
rewrite natrec_S; [rewrite natrec_0, H3; auto; reflexivity
|do 3 red; intros; rewrite H7; reflexivity|apply zero_typ].
rewrite split_lift. do 2 rewrite int_cons_lift_eq.
assert (int (Ref 1) (V.shift 1 i) == i 2) by reflexivity.
assert (int (App Succ Zero) (V.shift 1 i) == succ zero) by (apply int_S; apply zero_typ).
rewrite int_Add with (3:=H6) (4:=H7); [
|rewrite H6; trivial|rewrite H7; apply succ_typ; apply zero_typ].
rewrite natrec_S; [rewrite natrec_0, H3; auto; reflexivity
|do 3 red; intros; rewrite H9; reflexivity|apply zero_typ].
apply H0 in H; clear H0.
apply eq_SUCC_eq; trivial.
Qed.
(*Axiom 3 : x = x + 0*)
Definition ax3 := forall e, exists t,
typ e t (Fall (EQ_term (Ref 0) (App (App Add (Ref 0)) Zero))).
Lemma P_ax_intro3 : ax3.
unfold ax3.
exists (Abs Nat (Abs (Prod Nat prop) (Abs (App (Ref 0) (Ref 1)) (Ref 0)))).
unfold EQ_term. unfold lift at 1.
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_abs; [left; apply typ_prod;
[left; trivial|left; apply typ_N|apply typ_prop]| |discriminate].
rewrite (eq_term_lift_ref_fv 1 0 0); [simpl plus|omega].
apply typ_abs; [right| |discriminate].
setoid_replace prop with (subst (Ref 1) prop) using relation eq_term at 2;
[|simpl; split; red; reflexivity].
apply typ_app with (V:=Nat); [| |discriminate|discriminate].
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 3;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace (Prod Nat prop) with (lift 1 (Prod Nat prop)) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply typ_conv with (T:=(lift 1 (App (Ref 0) (Ref 1))));
[apply typ_var; trivial| |discriminate|discriminate].
unfold lift at 1. rewrite red_lift_app.
do 2 (rewrite eq_term_lift_ref_fv; [simpl plus|omega]).
apply eq_typ_app; [apply refl|do 2 red; intros].
unfold lift; rewrite int_lift_rec_eq. rewrite V.lams0.
red in H.
assert (nth_error (App (Ref 0) (Ref 1)::Prod Nat prop::Nat::e) 2 = value Nat) by trivial.
specialize H with (1:=H0); clear H0.
apply in_int_not_kind in H; [destruct H as (H, _)|discriminate].
unfold inX in H; simpl in H; rewrite El_def,eqNbot in H.
assert (int (Ref 0) (V.shift 2 (fun k : nat => i k)) == i 2) by reflexivity.
assert (int Zero (V.shift 2 (fun k : nat => i k)) == zero) by reflexivity.
rewrite int_Add with (3:=H0) (4:=H1); [rewrite natrec_0; trivial; reflexivity
|rewrite H0; trivial|rewrite H1; apply zero_typ].
Qed.
(*Axiom 4 : (x + y) + 1 = x + (y + 1)*)
Definition ax4 := forall e, exists t,
typ e t (Fall(Fall (EQ_term (App (App Add (App (App Add (Ref 0)) (Ref 1)))
(App Succ Zero)) (App (App Add (Ref 0)) (App (App Add (Ref 1)) (App Succ Zero)))))).
Lemma P_ax_intro4 : ax4.
unfold ax4.
exists (Abs Nat (Abs Nat (Abs (Prod Nat prop)
(Abs (App (Ref 0) (App (App Add (App (App Add (Ref 1)) (Ref 2)))
(App Succ Zero))) (Ref 0))))).
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_abs; [left; apply typ_N| |discriminate].
apply typ_abs; [left; apply typ_prod; [left; trivial|left; apply typ_N|apply typ_prop]|
|discriminate].
unfold lift at 1. repeat rewrite red_lift_app.
assert (eq_term (lift_rec 1 0 Add) Add) as Hadd_lift.
unfold Add. repeat rewrite red_lift_abs.
apply Abs_morph; [simpl; split; red; reflexivity|].
apply Abs_morph; [simpl; split; red; reflexivity|].
simpl; split; red; intros.
apply natrec_morph; [unfold V.lams, V.shift; simpl; apply H|
|unfold V.lams, V.shift; simpl; apply H].
do 3 red; intros. apply app_ext; [apply app_ext; [reflexivity|]|]; trivial.
unfold I.lams, I.shift; simpl; do 2 rewrite H; trivial.
rewrite Hadd_lift. do 2 (rewrite eq_term_lift_ref_fv; [simpl plus|omega]).
setoid_replace (lift_rec 1 0 Succ) with Succ using relation eq_term by
(simpl; split; red; reflexivity).
setoid_replace (lift_rec 1 0 Zero) with Zero using relation eq_term by
(simpl; split; red; reflexivity).
apply typ_abs; [right| |discriminate].
setoid_replace prop with
(subst (App (App Add (App (App Add (Ref 1)) (Ref 2))) (App Succ Zero)) prop)
using relation eq_term at 2 by (simpl; split; red; reflexivity).
apply typ_app with (V:=Nat); [| |discriminate|discriminate].
apply typ_Add2; [|apply typ_S1; apply typ_0].
apply typ_Add2.
setoid_replace Nat with (lift 2 Nat) using relation eq_term at 4;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace Nat with (lift 3 Nat) using relation eq_term at 4;
[apply typ_var; trivial|simpl; split; red; reflexivity].
setoid_replace (Prod Nat prop) with (lift 1 (Prod Nat prop)) using relation eq_term at 2;
[apply typ_var; trivial|simpl; split; red; reflexivity].
apply typ_conv with (T:= lift 1 (App (Ref 0) (App (App Add (App (App Add (Ref 1)) (Ref 2)))
(App Succ Zero)))); [apply typ_var; trivial| |discriminate|discriminate].
unfold lift. rewrite red_lift_app. rewrite eq_term_lift_ref_fv; [simpl plus|omega].
apply eq_typ_app; [apply refl|do 2 red; intros].
red in H.
assert (nth_error (App (Ref 0)
(App (App Add (App (App Add (Ref 1)) (Ref 2))) (App Succ Zero))
:: Prod Nat prop :: Nat :: Nat :: e) 2 = value Nat) as Hi2 by trivial.
assert (nth_error (App (Ref 0)
(App (App Add (App (App Add (Ref 1)) (Ref 2))) (App Succ Zero))
:: Prod Nat prop :: Nat :: Nat :: e) 3 = value Nat) as Hi3 by trivial.
apply H in Hi2; apply in_int_not_kind in Hi2; [|discriminate].
destruct Hi2 as (Hi2, _); unfold inX in Hi2; simpl in Hi2; rewrite El_def,eqNbot in Hi2.
apply H in Hi3; apply in_int_not_kind in Hi3; [|discriminate].
destruct Hi3 as (Hi3, _); unfold inX in Hi3; simpl in Hi3; rewrite El_def,eqNbot in Hi3.
clear H. do 2 rewrite int_lift_rec_eq. do 2 rewrite V.lams0.
assert (int (App (App Add (Ref 1)) (Ref 2)) (V.shift 1 (fun k : nat => i k)) ==
natrec (i 2) (fun _ => succ) (i 3)).
assert (int (Ref 1) (V.shift 1 (fun k : nat => i k)) == (i 2)) by reflexivity.
assert (int (Ref 2) (V.shift 1 (fun k : nat => i k)) == (i 3)) by reflexivity.
rewrite int_Add with (3:=H) (4:=H0); [reflexivity|rewrite H|rewrite H0]; trivial.
assert (forall n, int (App Succ Zero) (V.shift n i) == succ zero) as Hn1 by
(intros n; apply int_S; apply zero_typ).
rewrite int_Add with (3:=H) (4:=(Hn1 1)); [clear H
|rewrite H; change N with ((fun _ => N) (i 3)); apply natrec_typ; trivial;
[do 2 red; intros; reflexivity
|intros; apply succ_typ; trivial]
|rewrite (Hn1 1); apply succ_typ; apply zero_typ].
assert (int (Ref 0) (V.shift 2 (fun k : nat => i k)) == (i 2)) by reflexivity.
assert (int (App (App Add (Ref 1)) (App Succ Zero)) (V.shift 2 (fun k : nat => i k)) ==
natrec (i 3) (fun _ => succ) (succ zero)).