-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathextract_results.py
executable file
·479 lines (427 loc) · 19.2 KB
/
extract_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 29 10:52:58 2021
@author: Mohammed Amine
"""
import pickle
import numpy as np
import os
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import matplotlib
import torch
#import region_labels
def extract_weights_single(dataset, view, model, training_type, shot_n, cv_n):
if model == 'sag':
fs_path = '{}/weights/W_{}_{}_{}_view_{}_{}.pickle'.format(model, training_type, dataset, model, view, shot_n)
cv_path = '{}/weights/W_MainModel_{}_{}_{}_view_{}_CV_{}.pickle'.format(model,training_type, dataset, model, view, cv_n)
else:
fs_path = '{}/weights/W_{}_{}_{}{}_view_{}.pickle'.format(model, training_type, dataset, model, shot_n, view)
cv_path = '{}/weights/W_MainModel_{}_{}_{}_CV_{}_view_{}.pickle'.format(model,training_type, dataset, model, cv_n, view)
if training_type == 'Few_Shot':
x_path = fs_path
else:
x_path = cv_path
with open(x_path,'rb') as f:
weights = pickle.load(f)
if model == 'sag':
weights_vector = torch.mean(weights['w'], 1).detach().numpy()
if model == 'diffpool':
weights_vector = torch.mean(weights['w'], 1).detach().numpy()
if model == 'gcn':
weights_vector = weights['w'].squeeze().detach().numpy()
if model == 'gat':
weights_vector = weights['w'].squeeze().detach().numpy()
if model == 'gunet':
weights_vector = torch.mean(weights['w'], 0).detach().numpy()
return weights_vector
def extract_weights(dataset, view, model, training_type):
runs = []
if training_type == 'Few_Shot':
for shot_i in range(5):
runs.append(extract_weights_single(dataset, view, model, training_type, shot_i, 0))
if training_type == '3Fold':
for cv_i in range(3):
runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i))
if training_type == '5Fold':
for cv_i in range(5):
runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i))
if training_type == '10Fold':
for cv_i in range(10):
runs.append(extract_weights_single(dataset, view, model, training_type, 0, cv_i))
runs = np.array(runs)
weights = np.mean(runs, axis=0)
return weights
def top_biomarkers(weights, K_i):
weights_normalized = np.abs(weights)
result = []
w_sorted = weights_normalized.argsort() #verified
for i in range(1, 1+K_i):
result.append(w_sorted[-1*i])
return result
def sim(nodes1, nodes2):
if len(nodes1)==len(nodes2):
counter = 0
for i in nodes1:
for k in nodes2:
if i==k:
counter+=1
return counter/len(nodes1)
else:
print('nodes vectors are not caompatible')
def sim_respective(nodes1, nodes2):
if len(nodes1)==len(nodes2):
counter = 0
for i in range(len(nodes1)):
if nodes1[i]==nodes2[i]:
counter+=1
return counter/len(nodes1)
else:
print('nodes vectors are not caompatible')
def sim_respective_weighted(rank1, rank2, strength1, strength2): # ongoing
if len(rank1)==len(rank2) and len(strength1) == len(strength2) and len(rank1)==len(strength1):
n_views = max(rank1)
differences_rank = np.abs(rank1 - rank2)
differences_rank_weights = 1 - (differences_rank *1/n_views)
differences_strength = np.abs(strength1 - strength2)
max_diff_strength = max(differences_strength)
differences_strength_norm = differences_strength/max_diff_strength
differences_strength_weights = 1 - differences_strength_norm
sum_weights = np.sum(differences_rank_weights*differences_strength_weights)
weighted_intersection = sum_weights/len(rank1)
return weighted_intersection
else:
print('nodes vectors are not caompatible')
def view_specific_rep(dataset,view,training_type, models):
#models = ['diffpool', 'gat', 'gcn', 'gunet', 'sag']
Ks = [5, 10, 15, 20]
rep = np.zeros([len(models), len(models), len(Ks)])
for i in range(rep.shape[0]):
for j in range(rep.shape[1]):
weights_i = extract_weights(dataset, view, models[i], training_type)
weights_j = extract_weights(dataset, view, models[j], training_type)
a=4
for k in range(rep.shape[2]):
top_bio_i = top_biomarkers(weights_i, Ks[k])
top_bio_j = top_biomarkers(weights_j, Ks[k])
rep[i,j,k] = sim(top_bio_i, top_bio_j)
rep_mean = np.mean(rep, axis=2)
rep_dict = {}
rep_dict['matrix'] = rep_mean
rep_dict['dataset'] = dataset
rep_dict['view'] = view
rep_dict['models'] = models
rep_dict['training_type'] = training_type
return rep_dict
def overall_avg_rep_cv_fixed(data_dict, training_type):
dataset = data_dict['dataset']
views = data_dict['views']
models = data_dict['models']
rep = np.zeros([len(models), len(models), len(views)])
for view in views:
rep_dict = view_specific_rep(dataset,view,training_type,models)
rep[:,:,view] = rep_dict['matrix']
rep_mean = np.mean(rep, axis=2)
rep_dict = {}
rep_dict['matrix'] = rep_mean
rep_dict['models'] = models
rep_dict['dataset'] = dataset
rep_dict['training_type'] = training_type
return rep_dict
def overall_avg_rep(data_dict):
models = data_dict['models']
dataset = data_dict['dataset']
training_types = data_dict['training_types']
rep = np.zeros([len(models), len(models), len(training_types)])
for i in range(len(training_types)):
if i ==2:
s = 3
rep_dict = overall_avg_rep_cv_fixed(data_dict, training_types[i])
rep[:,:,i] = rep_dict['matrix']
rep_mean = np.mean(rep, axis=2)
rep_dict = {}
rep_dict['matrix'] = rep_mean
rep_dict['models'] = models
rep_dict['dataset'] = dataset
return rep_dict
def overall_avg_rep_plot(rep_dict, save_fig=False):
models = rep_dict['models']
df_cm = pd.DataFrame(rep_dict['matrix'], index = [i for i in models], columns = [i for i in models])
plt.figure(figsize = (10,7))
sns.heatmap(df_cm, annot=True ,vmin=0, vmax=1)
title_msg = 'Overall average reproducibility Dataset: '+rep_dict['dataset']
plt.title(title_msg)
if save_fig==True:
plt.savefig("./imgs/Rep_"+ rep_dict['dataset'] + '_avg'+".png")
plt.show()
plt.close()
def GNN_specific_rep_vect(dataset,views,training_type, model):
#models = ['diffpool', 'gat', 'gcn', 'gunet', 'sag']
Ks = [5, 10, 15, 20]
rep = np.zeros([len(views), len(views), len(Ks)])
for i in range(rep.shape[0]):
for j in range(rep.shape[1]):
weights_i = extract_weights(dataset, views[i], model, training_type)
weights_j = extract_weights(dataset, views[j], model, training_type)
for k in range(rep.shape[2]):
top_bio_i = top_biomarkers(weights_i, Ks[k])
top_bio_j = top_biomarkers(weights_j, Ks[k])
rep[i,j,k] = sim(top_bio_i, top_bio_j)
rep_mean = np.mean(rep, axis=2)
rep_vec = np.sum(rep_mean, axis=1)
rep_dict = {}
rep_dict['strength_vector'] = rep_vec
rep_dict['rank_vector'] = rep_vec.argsort()[::-1].argsort() # verified
rep_dict['dataset'] = dataset
rep_dict['views'] = views
rep_dict['model'] = model
rep_dict['training_type'] = training_type
return rep_dict
def overall_corr_rep_cv_fixed(data_dict, training_type):
dataset = data_dict['dataset']
views = data_dict['views']
models = data_dict['models']
rep_rank = np.zeros([len(models), len(models)])
rep_strength = np.zeros([len(models), len(models)])
for i in range(len(models)):
rep_vect_i = GNN_specific_rep_vect(dataset,views,training_type, models[i])
rep_rank_i = rep_vect_i['rank_vector']
rep_strength_i = rep_vect_i['strength_vector']
for j in range(len(models)):
rep_vect_j = GNN_specific_rep_vect(dataset,views,training_type, models[j])
rep_rank_j = rep_vect_j['rank_vector']
rep_strength_j = rep_vect_j['strength_vector']
corr_rank = np.corrcoef(rep_rank_i, rep_rank_j)
corr_strength = np.corrcoef(rep_strength_i, rep_strength_j)
rep_rank[i,j] = corr_rank[0,1]
rep_strength[i,j] = corr_strength[0,1]
#rep_mean = np.mean(rep, axis=2)
rep_dict = {}
rep_dict['rank_matrix'] = rep_rank
rep_dict['strength_matrix'] = rep_strength
rep_dict['models'] = models
rep_dict['dataset'] = dataset
rep_dict['training_type'] = training_type
return rep_dict
def overall_corr_rep(data_dict):
models = data_dict['models']
dataset = data_dict['dataset']
training_types = data_dict['training_types']
rep_rank = np.zeros([len(models), len(models), len(training_types)])
rep_strength = np.zeros([len(models), len(models), len(training_types)])
for i in range(len(training_types)):
rep_dict = overall_corr_rep_cv_fixed(data_dict, training_types[i])
rep_rank[:,:,i] = rep_dict['rank_matrix']
rep_strength[:,:,i] = rep_dict['strength_matrix']
rep_rank_mean = np.mean(rep_rank, axis=2)
rep_strength_mean = np.mean(rep_strength, axis=2)
rep_dict = {}
rep_dict['rank_matrix'] = rep_rank_mean
rep_dict['strength_matrix'] = rep_strength_mean
rep_dict['models'] = models
rep_dict['dataset'] = dataset
return rep_dict
def overall_corr_rep_plot(rep_dict, corr_type='rank', save_fig=False):
models = rep_dict['models']
corr_key = corr_type + '_matrix'
df_cm = pd.DataFrame(rep_dict[corr_key], index = [i for i in models], columns = [i for i in models])
plt.figure(figsize = (10,7))
sns.heatmap(df_cm, annot=True ,vmin=0, vmax=1)
title_msg = 'Overall '+ corr_type +' correlation reproducibility Dataset: '+rep_dict['dataset']
plt.title(title_msg)
if save_fig==True:
plt.savefig("./imgs/Rep_"+ rep_dict['dataset'] + '_' +corr_type + ".png")
plt.show()
plt.close()
def GNN_specific_rep_accumulated_vect(dataset,views,training_type, model):
#models = ['diffpool', 'gat', 'gcn', 'gunet', 'sag']
Ks = [5, 10, 15, 20]
rep = np.zeros([len(views), len(views), len(Ks)])
for i in range(rep.shape[0]):
for j in range(rep.shape[1]):
weights_i = extract_weights(dataset, views[i], model, training_type)
weights_j = extract_weights(dataset, views[j], model, training_type)
for k in range(rep.shape[2]):
top_bio_i = top_biomarkers(weights_i, Ks[k])
top_bio_j = top_biomarkers(weights_j, Ks[k])
rep[i,j,k] = sim(top_bio_i, top_bio_j)
rep_ranks_ks = np.zeros(len(views) * len(Ks))
for k in range(rep.shape[2]):
rep_k = rep[:,:,k]
rep_vec_k = np.sum(rep_k, axis=1)
rep_ranks_ks[k*len(views):(k+1)*len(views)] = rep_vec_k.argsort()[::-1].argsort() #verified
rep_s = np.sum(rep,axis=1)
#rep_mean = np.mean(rep, axis=2)
#rep_vec = np.sum(rep_mean, axis=1)
rep_f = rep_s.flatten()
rep_dict = {}
rep_dict['strength_vector'] = rep_f
rep_dict['rank_vector'] = rep_ranks_ks
rep_dict['dataset'] = dataset
rep_dict['views'] = views
rep_dict['model'] = model
rep_dict['training_type'] = training_type
return rep_dict
def KL_symmetric(P,Q):
epsilon = 0.00001
P = P+epsilon
Q = Q+epsilon
divergence_pq = np.sum(P*np.log(P/Q))
divergence_qp = np.sum(Q*np.log(Q/P))
divergence = (divergence_qp+divergence_pq)/2
return divergence
def overall_rep_accumulated_cv_fixed(data_dict, training_type): # ongoing
dataset = data_dict['dataset']
views = data_dict['views']
models = data_dict['models']
rep_intersection_rank = np.zeros([len(models), len(models)])
rep_intersection_weight = np.zeros([len(models), len(models)])
rep_KL = np.zeros([len(models), len(models)])
rep_L2 = np.zeros([len(models), len(models)])
rep_corr = np.zeros([len(models), len(models)])
for i in range(len(models)):
rep_vect_i = GNN_specific_rep_accumulated_vect(dataset,views,training_type, models[i])
rep_rank_i = rep_vect_i['rank_vector']
rep_strength_i = rep_vect_i['strength_vector']
for j in range(len(models)):
rep_vect_j = GNN_specific_rep_accumulated_vect(dataset,views,training_type, models[j])
rep_rank_j = rep_vect_j['rank_vector']
rep_strength_j = rep_vect_j['strength_vector']
if i==j:
rep_intersection_rank[i,j] = 1.0
rep_intersection_weight[i,j] = 1.0
else:
rep_intersection_rank[i,j] = sim_respective(rep_rank_i, rep_rank_j)
rep_intersection_weight[i,j] = sim_respective_weighted(rep_rank_i, rep_rank_j, rep_strength_i, rep_strength_j)
rep_KL[i,j] = KL_symmetric(rep_strength_i, rep_strength_j)
rep_L2[i,j] = np.linalg.norm(rep_strength_i - rep_strength_j)
corr_strength = np.corrcoef(rep_strength_i, rep_strength_j)
rep_corr[i,j] = corr_strength[0,1]
rep_dict = {}
rep_dict['intersection_rank'] = rep_intersection_rank
rep_dict['intersection_weight'] = rep_intersection_weight
rep_dict['correlation'] = rep_corr
rep_dict['KL'] = rep_KL
rep_dict['L2'] = rep_L2
rep_dict['models'] = models
rep_dict['dataset'] = dataset
rep_dict['training_type'] = training_type
return rep_dict
def overall_rep_accumulated(data_dict):
models = data_dict['models']
dataset = data_dict['dataset']
training_types = data_dict['training_types']
rep_intersection_rank = np.zeros([len(models), len(models), len(training_types)])
rep_intersection_weight = np.zeros([len(models), len(models), len(training_types)])
rep_KL = np.zeros([len(models), len(models), len(training_types)])
rep_L2 = np.zeros([len(models), len(models), len(training_types)])
rep_corr = np.zeros([len(models), len(models), len(training_types)])
for i in range(len(training_types)):
rep_dict = overall_rep_accumulated_cv_fixed(data_dict, training_types[i])
rep_intersection_rank[:,:,i] = rep_dict['intersection_rank']
rep_intersection_weight[:,:,i] = rep_dict['intersection_weight']
rep_corr[:,:,i] = rep_dict['correlation']
rep_KL[:,:,i] = rep_dict['KL']
rep_L2[:,:,i] = rep_dict['L2']
rep_intersection_rank_mean = np.mean(rep_intersection_rank, axis=2)
rep_intersection_weight_mean = np.mean(rep_intersection_weight, axis=2)
rep_corr_mean = np.mean(rep_corr, axis=2)
rep_KL_mean = np.mean(rep_KL, axis=2)
rep_L2_mean = np.mean(rep_L2, axis=2)
rep_dict = {}
rep_dict['rank intersection'] = rep_intersection_rank_mean
rep_dict['weighted intersection'] = rep_intersection_weight_mean
rep_dict['correlation'] = rep_corr_mean
rep_dict['KL'] = rep_KL_mean
rep_dict['L2'] = rep_L2_mean
rep_dict['models'] = models
rep_dict['dataset'] = dataset
return rep_dict
def overall_rep_accumulated_plot(rep_dict, save_fig=False):
models = rep_dict['models']
keys = ['rank intersection', 'weighted intersection', 'correlation', 'KL', 'L2']
a = 2 # number of rows
b = 3 # number of columns
c = 1 # initialize plot counter
fig = plt.figure(figsize=(18,10))
for k in keys:
plt.subplot(a, b, c)
plt.title(k)
#plt.xlabel(k)
df_k = pd.DataFrame(rep_dict[k], index = [i for i in models], columns = [i for i in models])
sns.heatmap(df_k, annot=True ,vmin=df_k.to_numpy().min(), vmax=df_k.to_numpy().max())
c = c + 1
dataname_clean = rep_dict['dataset']
dataname_clean.replace("_"," ")
fig.suptitle('accumulated reproducibility matarices with accumulated GNN specific vectors '+dataname_clean)
plt.show()
if save_fig==True:
plt.savefig("./imgs/Rep_accumulated"+ rep_dict['dataset'] + '_' + ".png")
def manage_all_reps(data_dict):
rep_avg = overall_avg_rep(data_dict)
rep_corr = overall_corr_rep(data_dict)
rep_accumulated = overall_rep_accumulated(data_dict)
rep_dict = {}
rep_dict['models'] = data_dict['models']
rep_dict['dataset'] = data_dict['dataset']
rep_dict['rank intersection (accumulated)'] = rep_accumulated['rank intersection']
rep_dict['weighted intersection (accumulated)'] = rep_accumulated['weighted intersection']
rep_dict['correlation (accumulated)'] = rep_accumulated['correlation']
rep_dict['KL (accumulated)'] = rep_accumulated['KL']
rep_dict['L2 (accumulated)'] = rep_accumulated['L2']
rep_dict['rank correlation'] = rep_corr['rank_matrix']
rep_dict['strength correlation'] = rep_corr['strength_matrix']
rep_dict['views average'] = rep_avg['matrix']
return rep_dict
def manage_all_reps_plot(rep_dict, save_fig=False):
models = rep_dict['models']
keys_rep = list(rep_dict.keys())
keys_rep.remove('models')
keys_rep.remove('dataset')
#keys = ['rank intersection', 'weighted intersection', 'correlation', 'KL', 'L2']
a = 2 # number of rows
b = 4 # number of columns
c = 1 # initialize plot counter
fig = plt.figure(figsize=(25,10))
for k in keys_rep:
plt.subplot(a, b, c)
plt.title(k)
#plt.xlabel(k)
df_k = pd.DataFrame(rep_dict[k], index = [i for i in models], columns = [i for i in models])
sns.heatmap(df_k, annot=True ,vmin=df_k.to_numpy().min(), vmax=df_k.to_numpy().max())
c = c + 1
dataname_clean = rep_dict['dataset']
dataname_clean.replace("_"," ")
fig.suptitle('reproducibility matrices '+dataname_clean)
plt.show()
if save_fig==True:
plt.savefig("./imgs/Rep_accumulated"+ rep_dict['dataset'] + '_' + ".png")
'''# 1. avg
rep_avg = overall_avg_rep(data_dict)
overall_avg_rep_plot(rep_avg, save_fig = True)'''
'''# 2. corr
rep_corr = overall_corr_rep(data_dict)
overall_corr_rep_plot(rep_corr, corr_type='rank')
overall_corr_rep_plot(rep_corr, corr_type='strength', save_fig = True) '''
# 3. accuulated Ks
#aa = overall_rep_accumulated(data_dict)
#overall_rep_accumulated_plot(aa)
data_dict={}
data_dict['dataset'] = 'Demo' # 'LH_ADLMCI'
data_dict['views'] = [0, 1, 2, 3] #number of views
data_dict['models'] = ['diffpool', 'gat', 'gcn', 'gunet', 'sag']
data_dict['training_types'] = ['3Fold'] #'Few_Shot'
rep_dict = manage_all_reps(data_dict)
name = data_dict['dataset'] + '_cv.pickle'
with open(name, 'wb') as f:
pickle.dump(rep_dict, f)
data_dict={}
data_dict['dataset'] = 'Demo' # 'LH_ADLMCI'
data_dict['views'] = [0, 1, 2, 3] #number of views
data_dict['models'] = ['diffpool', 'gat', 'gcn', 'gunet', 'sag']
data_dict['training_types'] = ['Few_Shot'] #'Few_Shot'
rep_dict = manage_all_reps(data_dict)
name = data_dict['dataset'] + '_fs.pickle'
with open(name, 'wb') as f:
pickle.dump(rep_dict, f)