-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_explainer_ham10k.py
143 lines (130 loc) · 9.4 KB
/
train_explainer_ham10k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import os
import sys
from Explainer.experiments_explainer_ham10k import train
sys.path.append(os.path.abspath("/ocean/projects/asc170022p/shg121/PhD/ICLR-2022"))
parser = argparse.ArgumentParser(description='HAM10k Training')
parser.add_argument('--data-root', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/data/HAM10k',
help='path to dataset')
parser.add_argument('--logs', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/log',
help='path to tensorboard logs')
parser.add_argument('--checkpoints', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints',
help='path to checkpoints')
parser.add_argument('--output', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/out',
help='path to output logs')
parser.add_argument('--bb-dir', metavar='DIR',
default='/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints/HAM10k/BB/Inception_V3',
help='path to BB')
parser.add_argument('--seed', default=1, type=int, metavar='N', help='seed')
parser.add_argument('--pretrained', type=bool, default=True, help='pretrained imagenet')
parser.add_argument('--dataset', type=str, default="HAM10k", help='dataset name')
parser.add_argument('--model-name', type=str, default="ham10000", help='name of the checkpoint')
parser.add_argument(
'--derm7_folder', type=str, default="/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/data/Derm7pt",
help='DERM7_Folder'
)
parser.add_argument('--derm7_meta', type=str, default="meta.csv", help='DERM7_META')
parser.add_argument('--derm7_train_idx', type=str, default="train_indexes.csv", help='TRAIN_IDX')
parser.add_argument('--derm7_val_idx', type=str, default="valid_indexes.csv", help='VAL_IDX')
parser.add_argument('--img-size', type=int, default=448, help='image\'s size for transforms')
parser.add_argument(
'--bs', '--batch-size', '--train_batch_size', '--eval_batch_size', default=32, type=int,
metavar='N', help='batch size BB'
)
parser.add_argument('--num-workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument("--eval_every", default=100, type=int,
help="100Run prediction on validation set every so many steps."
"Will always run one evaluation at the end of training.")
parser.add_argument('--arch', type=str, default="Inception_V3", help='BB architecture')
parser.add_argument("--name", default="VIT_CUBS",
help="Name of this run. Used for monitoring.")
parser.add_argument(
"--pretrained_dir", type=str,
default="/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints/pretrained_VIT/ViT-B_16.npz",
help="Where to search for pretrained ViT models."
)
parser.add_argument("--pretrained_model", type=str, default=None,
help="load pretrained model")
parser.add_argument("--num_steps", default=10000, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine",
help="How to decay the learning rate.")
parser.add_argument("--warmup_steps", default=500, type=int,
help="Step of training to perform learning rate warmup for.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--gradient_accumulation_steps', type=int, default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--smoothing_value', type=float, default=0.0,
help="Label smoothing value\n")
parser.add_argument('--split', type=str, default='non-overlap',
help="Split method")
parser.add_argument('--slide_step', type=int, default=12,
help="Slide step for overlap split")
parser.add_argument('--labels', nargs='+',
default=['0 (Benign)', '1 (Malignant)'])
parser.add_argument('--concepts', nargs='+',
default=["Sex", "BWV", "RegularDG", "IrregularDG", "RegressionStructures",
"IrregularStreaks", "RegularStreaks", "AtypicalPigmentNetwork", "TypicalPigmentNetwork"])
parser.add_argument('--concept_file_name', type=str, default='derma_ham10000_0.01_50.pkl', help="concept_file_name")
parser.add_argument('--iter', default=1, type=int, metavar='N', help='iteration')
parser.add_argument('--expert-to-train', default="explainer", type=str, metavar='N',
help='which expert to train? explainer or residual')
parser.add_argument('--cov', nargs='+', default=[0.3, 0.4], type=float, help='coverage of the dataset')
parser.add_argument('--alpha', default=0.5, type=float, help='trade off for Aux explainer using Selection Net')
parser.add_argument('--selection-threshold', default=0.5, type=float,
help='selection threshold of the selector for the test/val set')
parser.add_argument('--lr-residual', '--learning-rate-residual', default=0.0001, type=float,
metavar='LR', help='initial learning rate of residual')
parser.add_argument('--momentum-residual', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('--weight-decay-residual', type=float, default=1e-4, help='weight_decay for SGD')
parser.add_argument('--lr', '--learning-rate', nargs='+', default=[0.01, 0.001], type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--input-size-pi', default=2048, type=int,
help='input size of pi - 2048 for layer4 (ResNet) or 1024 for layer3 (ResNet) ')
parser.add_argument('--temperature-lens', default=0.7, type=float, help='temperature for entropy layer in lens')
parser.add_argument('--lambda-lens', default=0.0001, type=float, help='weight for entropy loss')
parser.add_argument('--alpha-KD', default=0.9, type=float, help='weight for KD loss by Hinton')
parser.add_argument('--temperature-KD', default=10, type=float, help='temperature for KD loss')
parser.add_argument('--conceptizator', default='identity_bool', type=str, help='activation')
parser.add_argument('--hidden-nodes', nargs="+", default=[10], type=int, help='hidden nodes of the explainer model')
parser.add_argument('--epochs', type=int, default=500, help='epoch size for training the explainer - g')
parser.add_argument('--epochs-residual', type=int, default=50, help='epoch size for training the residual')
parser.add_argument('--concept-names', nargs='+',
default=[
# "Sex",
"BWV", "RegularDG", "IrregularDG", "RegressionStructures",
"IrregularStreaks", "RegularStreaks", "AtypicalPigmentNetwork", "TypicalPigmentNetwork"
])
parser.add_argument('--lm', default=32.0, type=float, help='lagrange multiplier for selective KD loss')
parser.add_argument('--checkpoint-model', metavar='file', nargs="+",
default=['model_g_best_model_epoch_7.pth.tar', "model_g_best_model_epoch_365.pth.tar"],
help='checkpoint files all the experts of previous iterations. For example: if the current iteration is 3, include the checkpoint files expert 1 and expert 2')
parser.add_argument('--checkpoint-residual', metavar='file', nargs="+",
default=['model_residual_best_model_epoch_2.pth.tar'],
help='checkpoint files all the residuals of previous iterations. For example: if the current iteration is 3, include the checkpoint files residual 1 and residual 2')
parser.add_argument('--prev_explainer_chk_pt_folder', metavar='path', nargs="+",
default=[
"/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints/HAM10k/explainer/lr_0.01_epochs_500_temperature-lens_0.7_input-size-pi_2048_cov_0.45_alpha_0.5_selection-threshold_0.5_lambda-lens_0.0001_alpha-KD_0.9_temperature-KD_10.0_hidden-layers_1/iter1",
"/ocean/projects/asc170022p/shg121/PhD/ICLR-2022/checkpoints/HAM10k/explainer/lr_0.01_epochs_500_temperature-lens_0.7_input-size-pi_2048_cov_0.45_alpha_0.5_selection-threshold_0.5_lambda-lens_0.0001_alpha-KD_0.9_temperature-KD_10.0_hidden-layers_1/cov_0.2/iter2"],
help='checkpoint folders of previous experts with absolute path. For example: if the current iteration is 3, include the folder paths of the checkpoints expert 1 and expert 2')
parser.add_argument('--train_baseline', type=str, default="n", help='train baseline or glt')
parser.add_argument('--soft', default='y', type=str, metavar='N', help='soft/hard concept?')
parser.add_argument('--with_seed', default='n', type=str, metavar='N', help='trying diff seeds for paper')
parser.add_argument('--test', default='n', type=str, metavar='N', help='trying diff seeds for paper')
parser.add_argument('--profile', default='n', type=str, metavar='N', help='trying diff seeds for paper')
def main():
print("Train GLT for HAM10k")
args = parser.parse_args()
args.class_to_idx = {"benign": 0, "malignant": 1}
print("Training explainer for Skin")
train(args)
if __name__ == '__main__':
main()