-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_video.py
221 lines (186 loc) · 7.97 KB
/
testing_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
########################################################################
# #
# This python script tests the motion detector software by reading #
# from a video file. So that the camera module is not needed #
# at this time. #
# #
########################################################################
# import the necessary packages
import argparse
import warnings
import datetime
#import imutils
import json
import time
import cv2
import numpy as np
def playVideo(filename):
# read video file
cap = cv2.VideoCapture(filename)
while(cap.isOpened()):
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#cv2.imshow('frame',gray)
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return;
def testMotion(filename):
# load file
cap = cv2.VideoCapture(filename)
# initialize the average frame, last uploaded timestamp
# and frame motion counter
avg = None
lastUploaded = datetime.datetime.now()
motionCounter = 0
# loop
while(cap.isOpened()):
# get frame
ret, frame = cap.read()
# grab the raw NumPy array representing the image and initialize
# initialize the timestamp and occupied/unoccupied text
##frame = f.array
timestamp = datetime.datetime.now()
text = "Unoccupied"
# resize the frame, convert it to grayscale, and blur it
#frame = imutils.resize(frame, width=500)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# if the average frame is None, initialize it
if avg is None:
print ("[INFO] starting background model...")
avg = gray.copy().astype("float")
#rawCapture.truncate(0)
#frame.truncate(0)
continue
# accumulate the weighted average between the current frame and
# previous frames, then compute the difference between the current
# frame and running average
cv2.accumulateWeighted(gray, avg, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg))
# threshold the delta image, dilate the thresholded image to fill
# in holes, then find contours on thresholded image
thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
(_, cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
#http://www.answers.opencv.org/question/40329/python-valueerror-too-many-values-to-unpack/
# loop over the contours
for c in cnts:
# if the contour is too small, ignore it
if cv2.contourArea(c) < conf["min_area"]:
continue
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
text = "Occupied"
# draw the text and timestamp on the frame
ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.35, (0, 0, 255), 1)
# check to see if the frames should be displayed to screen
if conf["show_video"]:
# display the security feed
cv2.imshow("Security Feed", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key is pressed, break from the lop
if key == ord("q"):
break
# clear the stream in preparation for the next frame
#rawCapture.truncate(0)
#frame.truncate(0)
###
#cv2.imshow('frame',gray)
#if cv2.waitKey(1) & 0xFF == ord('q'):
# break
return;
## # capture frames from the camera
## for f in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
## # grab the raw NumPy array representing the image and initialize
## # the timestamp and occupied/unoccupied text
## frame = f.array
## timestamp = datetime.datetime.now()
## text = "Unoccupied"
##
## # resize the frame, convert it to grayscale, and blur it
## #frame = imutils.resize(frame, width=500)
## gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
## gray = cv2.GaussianBlur(gray, (21, 21), 0)
##
## # if the average frame is None, initialize it
## if avg is None:
## print ("[INFO] starting background model...")
## avg = gray.copy().astype("float")
## rawCapture.truncate(0)
## continue
##
## # accumulate the weighted average between the current frame and
## # previous frames, then compute the difference between the current
## # frame and running average
## cv2.accumulateWeighted(gray, avg, 0.5)
## frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg))
##
##
## # threshold the delta image, dilate the thresholded image to fill
## # in holes, then find contours on thresholded image
## thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255,
## cv2.THRESH_BINARY)[1]
## thresh = cv2.dilate(thresh, None, iterations=2)
## (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
## cv2.CHAIN_APPROX_SIMPLE)
##
## # loop over the contours
## for c in cnts:
## # if the contour is too small, ignore it
## if cv2.contourArea(c) < conf["min_area"]:
## continue
##
## # compute the bounding box for the contour, draw it on the frame,
## # and update the text
## (x, y, w, h) = cv2.boundingRect(c)
## cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
## text = "Occupied"
##
## # draw the text and timestamp on the frame
## ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
## cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
## cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
## cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,
## 0.35, (0, 0, 255), 1)
##
##
## # check to see if the frames should be displayed to screen
## if conf["show_video"]:
## # display the security feed
## cv2.imshow("Security Feed", frame)
## key = cv2.waitKey(1) & 0xFF
##
## # if the `q` key is pressed, break from the lop
## if key == ord("q"):
## break
##
## # clear the stream in preparation for the next frame
## rawCapture.truncate(0)
## MAIN
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--conf",
required=True,
help="path to the JSON configuration file")
args = vars(ap.parse_args())
# filter warnings, load the configuration
warnings.filterwarnings("ignore")
conf = json.load(open(args["conf"]))
# play video
#print ("[INFO] playing video...")
#playVideo(conf["videofilename"])
# test motion
print ("[INFO] testing motion...")
testMotion(conf["videofilename"])
exit;