-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBussgang_GMM.py
332 lines (304 loc) · 15.9 KB
/
Bussgang_GMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import numpy as np
import multiprocessing as mp
from modules.SCM3GPP.SCMMulti import SCMMulti
from estimators.blmmse import BLMMSE, mp_eval
from estimators.LS import LS
from modules.gmm_cplx_bussgang import Gmm_nbit
import datetime
import csv
import modules.utils as ut
from copy import deepcopy
import joblib
from modules.uniform_quantizer import get_Bussgang_matrix, get_Cr
def mp_gmm(obj, *args):
return obj.estimate_from_y(*args)
def mp_gmm_LS(obj, *args):
return obj.estimate_from_y_LS(*args)
def mp_LS_genie(obj, *args):
return obj.estimate_genie(*args)
def mp_LS_global(obj, *args):
return obj.estimate_global(*args)
if __name__ == "__main__":
n_processes = int(mp.cpu_count() / 2) # int(mp.cpu_count() / 2 - 1)
print('Uses ' + str(n_processes) + ' processes')
# prepare multiprocessing
pool = mp.Pool(processes=n_processes)
n_antennas = 64 # BS antennas
n_components = 64 # GMM components
n_summands_or_proba = 'all' # Number of GMM LMMSE that should be evaluated
n_path = 1 # Number of propagation clusters of the 3GPP channel model
n_pilots = 1 # Number of pilots
n_bits = 2 # Number of quantization bits
cov_type = 'full' # covariance type of the GMM {'full', 'toeplitz', 'circulant'}
pilot_type = 'angle_amp' # Pilot type {'angle', 'angle_amp', 'rand', 'ones'}
quantizer_type = 'uniform' # Quantizer type {'uniform', 'lloyd'}
snrs = [-10, -5, 0, 5, 10, 15, 20] # SNR range to be evaluated
params = dict()
params['n_antennas'] = n_antennas
params['n_comp'] = n_components
params['n_bits'] = n_bits
params['n_path'] = n_path
params['cov_type'] = cov_type
params['quantizer_type'] = quantizer_type
params['zero_mean_gmm'] = True
# choose which algorithms to evaluate
eval_blmmse_genie = True # genie-Bussgang
eval_blmmse_glob = True # global-Bussgang
eval_blmmse_gmm = True # GMM-Bussgang
eval_LS_glob = True # Bussgang least squares
eval_rate = True # True if the rate lower bound should be evaluated in addition to the MSE
n_channels = 110_000
n_train_ch = 100_000 # training data
n_val_ch = 10_000 # validation data
mse_list = list()
snrs_ = snrs.copy()
snrs_.insert(0, 'SNR')
mse_list.append(snrs_)
rate_list = list()
snrs_ = snrs.copy()
snrs_.insert(0, 'SNR')
rate_list.append(snrs_)
date_time_now = datetime.datetime.now()
date_time = date_time_now.strftime('%Y-%m-%d_%H-%M-%S') # convert to str compatible with all OSs
# Create channel data by the 3GPP channel model
params['model_type'] = '3gpp'
params['n_path'] = n_path
path_sigma = 2.0
os.makedirs('results/saves/', exist_ok=True)
file_name_3gpp = 'results/saves/saved_data_ant=' + str(n_antennas) + '_model=' + str(params['model_type']) + \
'_paths=' + str(params['n_path']) + '_ntrain=' + str(n_train_ch) + '_nchan=' + \
str(n_channels) + '.npy'
# try to load stored dataset, else create one and save it
try:
data = np.load(file_name_3gpp)
channels = data[0] # channel data
toep = data[1] # vectors to create the genie-covariances
except FileNotFoundError:
channel_scm = SCMMulti(path_sigma=path_sigma, n_path=n_path)
rng = np.random.default_rng(np.random.randint(1e8))
channels, toep = channel_scm.generate_channel(n_channels, 1, n_antennas, rng)
channels = np.squeeze(channels)
np.save(file_name_3gpp, (channels, toep))
channel_scm = SCMMulti(path_sigma=path_sigma, n_path=n_path)
rng = np.random.default_rng(np.random.randint(1e9))
channels, toep = channel_scm.generate_channel(n_channels, 1, n_antennas, rng)
channels = np.squeeze(channels)
if len(channels.shape) == 1:
channels = np.expand_dims(channels, 1)
toep_train = toep[:n_train_ch]
toep_val = toep[n_train_ch:n_train_ch+n_val_ch]
channels_train = channels[:n_train_ch]
channels_val = channels[n_train_ch:n_train_ch+n_val_ch]
params['n_pilots'] = n_pilots
params['n_train'] = n_train_ch
params['n_val'] = n_val_ch
# get pilot matrix
A = ut.get_pilot_matrix(n_antennas, n_pilots, n_bits, pilot_type=pilot_type)
# get quantizer
quantizer = ut.get_quantizer(snrs, n_bits, quantizer_type=quantizer_type)
# Compute sample covariance matrix with the training data
cov = np.zeros([n_antennas, n_antennas], dtype=complex)
for i in range(n_train_ch):
cov = cov + np.expand_dims(channels_train[i, :], 1) @ np.expand_dims(channels_train[i, :].conj(), 0)
cov = cov / n_train_ch
# global-Bussgang
if eval_blmmse_glob:
mse_list.append(['blmmse_glob'])
rate_list.append(['blmmse_glob_rstat'])
eval_list_glob = list()
# compute blmmse with global cov
for snr in snrs:
r = ut.get_observation_nbit(channels_val, snr, A, n_bits, quantizer[snr][0], quantizer[snr][1])
if len(r.shape) == 1:
r = np.expand_dims(r, 1)
r_train = ut.get_observation_nbit(channels_train, snr, A, n_bits, quantizer[snr][0], quantizer[snr][1])
if len(r_train.shape) == 1:
r_train = np.expand_dims(r_train, 1)
eval_list_glob.append([BLMMSE(snr), r, cov, channels_val, False, A, n_bits, quantizer_type, quantizer[snr]])
# compute channel estimates in parallel
res_glob_blmmse = pool.starmap(mp_eval, eval_list_glob)
# evaluate MSE and achievable rate lower bound
for it, res in enumerate(res_glob_blmmse):
mse_act = np.sum(np.abs(res - channels_val) ** 2) / channels_val.size
mse_list[-1].append(mse_act)
if eval_rate:
snr = snrs[it]
Cy_act = cov + 10**(-snr/10) * np.eye(n_antennas, dtype=complex)
Buss_glob = get_Bussgang_matrix(snr, n_bits, Cy_act)
Cr = get_Cr(Cy_act, n_bits, snr, quantizer[snr])
Cq_glob = Cr - Buss_glob @ cov @ Buss_glob.conj().T
# evaluate statistical rate lower bound
norm_fac = np.sum(np.abs(res)**2, axis=1)
norm_fac_test = np.sum(np.abs(channels_val)**2, axis=1)
for i in range(res.shape[0]):
res[i] /= norm_fac[i]
inner = np.squeeze(np.expand_dims(res.conj(), 1) @ Buss_glob @ np.expand_dims(channels_val, 2))
num = np.abs(np.mean(inner, axis=0)) ** 2
den1 = np.var(inner, axis=0)
den2 = np.real(np.squeeze(np.expand_dims(res.conj(), 1) @ Cq_glob @ np.expand_dims(res, 2)))
den2 = np.mean(den2, axis=0)
rate_glob2 = np.log2(1 + num / (den1 + den2))
rate_list[-1].append(rate_glob2)
# Bussgang least squares
if eval_LS_glob:
mse_list.append(['LS_glob'])
rate_list.append(['LS_glob_stat'])
eval_list_glob = list()
# compute blmmse with global cov
for snr in snrs:
r = ut.get_observation_nbit(channels_val, snr, A, n_bits, quantizer[snr][0], quantizer[snr][1])
eval_list_glob.append([LS(snr), r, cov, A, n_bits, quantizer_type, quantizer[snr]])
# compute channel estimates in parallel
res_glob_blmmse = pool.starmap(mp_LS_global, eval_list_glob)
for it, res in enumerate(res_glob_blmmse):
mse_act = np.sum(np.abs(res - channels_val) ** 2) / channels_val.size
mse_list[-1].append(mse_act)
if eval_rate:
# compute rate lower bound: global
snr = snrs[it]
Cy_act = cov + 10**(-snr/10) * np.eye(n_antennas, dtype=complex)
Buss_glob = get_Bussgang_matrix(snr, n_bits, Cy_act)
Cr = get_Cr(Cy_act, n_bits, snr, quantizer[snr])
Cq_glob = Cr - Buss_glob @ cov @ Buss_glob.conj().T
Cq_inv = np.linalg.pinv(Cq_glob)
rate_glob = 0.0
rate_genie = 0.0
for n_datai in range(res.shape[0]):
g_mf_h = res[n_datai].conj().T @ Buss_glob.conj().T @ Cq_inv
err = channels_val[n_datai] - res[n_datai]
rate_glob += np.real(
np.log2(1 + (np.abs(g_mf_h @ Buss_glob @ res[n_datai]) ** 2) / (
g_mf_h @ Cq_glob @ g_mf_h.conj().T + np.abs(g_mf_h @ Buss_glob @ err) ** 2)))
rate_list[-2].append(rate_glob / res.shape[0])
#evaluate statistical lower bound
norm_fac = np.sum(np.abs(res)**2, axis=1)
norm_fac_test = np.sum(np.abs(channels_val)**2, axis=1)
for i in range(res.shape[0]):
res[i] /= norm_fac[i]
inner = np.squeeze(np.expand_dims(res.conj(), 1) @ Buss_glob @ np.expand_dims(channels_val, 2))
num = np.abs(np.mean(inner, axis=0)) ** 2
den1 = np.var(inner, axis=0)
den2 = np.real(np.squeeze(np.expand_dims(res.conj(), 1) @ Cq_glob @ np.expand_dims(res, 2)))
den2 = np.mean(den2, axis=0)
rate_glob2 = np.log2(1 + num / (den1 + den2))
rate_list[-1].append(rate_glob2)
# genie-Bussgang
if eval_blmmse_genie:
mse_list.append(['blmmse_genie'])
rate_list.append(['blmmse_genie_rstat'])
eval_list_genie = list()
for snr in snrs:
r = ut.get_observation_nbit(channels_val, snr, A, n_bits, quantizer[snr][0], quantizer[snr][1])
eval_list_genie.append([BLMMSE(snr), r, toep_val, channels_val, True, A, n_bits, quantizer_type, quantizer[snr], None])
# compute channel estimates in parallel
res_genie_blmmse = pool.starmap(mp_eval, eval_list_genie)
for it, res in enumerate(res_genie_blmmse):
mse_act = np.sum(np.abs(res - channels_val) ** 2) / channels_val.size
mse_list[-1].append(mse_act)
if eval_rate:
snr = snrs[it]
Cy_act = cov + 10**(-snr/10) * np.eye(n_antennas, dtype=complex)
Buss_glob = get_Bussgang_matrix(snr, n_bits, Cy_act)
Cr = get_Cr(Cy_act, n_bits, snr, quantizer[snr])
Cq_glob = Cr - Buss_glob @ cov @ Buss_glob.conj().T
Cq_inv = np.linalg.pinv(Cq_glob)
#evaluate statistical lower bound
norm_fac = np.sum(np.abs(res)**2, axis=1)
norm_fac_test = np.sum(np.abs(channels_val)**2, axis=1)
for i in range(res.shape[0]):
res[i] /= norm_fac[i]
inner = np.squeeze(np.expand_dims(res.conj(), 1) @ Buss_glob @ np.expand_dims(channels_val, 2))
num = np.abs(np.mean(inner, axis=0)) ** 2
den1 = np.var(inner, axis=0)
den2 = np.real(np.squeeze(np.expand_dims(res.conj(), 1) @ Cq_glob @ np.expand_dims(res, 2)))
den2 = np.mean(den2, axis=0)
rate_glob = np.log2(1 + num / (den1 + den2))
rate_list[-1].append(rate_glob)
# evaluate rate with perfect CSI
if eval_rate:
rate_list.append(['perfect_rstat'])
for snr in snrs:
Cy_act = cov + 10 ** (-snr / 10) * np.eye(n_antennas, dtype=complex)
Buss_glob = get_Bussgang_matrix(snr, n_bits, Cy_act)
Cr = get_Cr(Cy_act, n_bits, snr, quantizer[snr])
Cq_glob = Cr - Buss_glob @ cov @ Buss_glob.conj().T
# evaluate statistical lower bound
res = channels_val.copy()
norm_fac = np.sum(np.abs(res) ** 2, axis=1)
for i in range(res.shape[0]):
res[i] /= norm_fac[i]
inner = np.squeeze(np.expand_dims(res.conj(), 1) @ Buss_glob @ np.expand_dims(channels_val, 2))
num = np.abs(np.mean(inner, axis=0)) ** 2
den1 = np.var(inner, axis=0)
den2 = np.real(np.squeeze(np.expand_dims(res.conj(), 1) @ Cq_glob @ np.expand_dims(res, 2)))
den2 = np.mean(den2, axis=0)
rate_glob = np.log2(1 + num / (den1 + den2))
rate_list[-1].append(rate_glob)
# GMM-Bussgang
if eval_blmmse_gmm:
file_name_gmm = f'results/saves/trained_gmm_ant=' + str(n_antennas) + '_comp=' + str(n_components) + \
'_model=' + str(params['model_type']) + '_paths=' + str(params['n_path']) + \
'_ntrain=' + str(n_train_ch) + f'_covtype={cov_type}_cplx_zeromean={params["zero_mean_gmm"]}.sav'
try:
gmm_est = joblib.load(file_name_gmm)
print('Loading trained gmm successful.')
except FileNotFoundError:
gmm_est = Gmm_nbit(n_components=n_components, covariance_type=cov_type)
print('Fit gmm...')
gmm_est.fit(h=channels_train, zero_mean=params['zero_mean_gmm'])
print('done.')
joblib.dump(gmm_est, file_name_gmm)
params['n_summands_or_proba'] = n_summands_or_proba
rate_list.append(['gmm_rstat'])
mse_list.append(['blmmse_gmm'])
gmm_copy = deepcopy(gmm_est)
gmm_list = list()
for snr in snrs:
r_val = ut.get_observation_nbit(channels_val, snr, A, n_bits, quantizer[snr][0], quantizer[snr][1])
gmm_list.append([gmm_copy, r_val, snr, n_antennas, A, n_summands_or_proba, n_bits, quantizer_type, quantizer[snr]])
res_gmm_blmmse = pool.starmap(mp_gmm, gmm_list)
for it, res in enumerate(res_gmm_blmmse):
mse_act = np.sum(np.abs(res - channels_val)**2) / channels_val.size
mse_list[-1].append(mse_act)
if eval_rate:
#compute rate lower bound: global
snr = snrs[it]
Cy_act = cov + 10**(-snr/10) * np.eye(n_antennas, dtype=complex)
Buss_glob = get_Bussgang_matrix(snr, n_bits, Cy_act)
Cr = get_Cr(Cy_act, n_bits, snr, quantizer[snr])
Cq_glob = Cr - Buss_glob @ cov @ Buss_glob.conj().T
# evaluate statistical lower bound
norm_fac = np.clip(np.sum(np.abs(res) ** 2, axis=1), 1e-1, np.inf)
norm_fac_test = np.sum(np.abs(channels_val) ** 2, axis=1)
for i in range(res.shape[0]):
res[i] /= norm_fac[i]
inner = np.squeeze(np.expand_dims(res.conj(), 1) @ Buss_glob @ np.expand_dims(channels_val, 2))
num = np.abs(np.mean(inner, axis=0)) ** 2
den1 = np.var(inner, axis=0)
den2 = np.real(np.squeeze(np.expand_dims(res.conj(), 1) @ Cq_glob @ np.expand_dims(res, 2)))
den2 = np.mean(den2, axis=0)
rate_glob = np.log2(1 + num / (den1 + den2))
rate_list[-1].append(rate_glob)
mse_list = [list(i) for i in zip(*mse_list)]
rate_list = [list(i) for i in zip(*rate_list)]
print(mse_list)
os.makedirs(f'results/{params["model_type"]}/', exist_ok=True)
file_name = f'./results/' + params['model_type'] + '/' + date_time + '_ant=' + str(n_antennas) + \
'_path=' + str(n_path) + '_ntrain=' + str(n_train_ch) + '_comp=' + str(n_components) + \
'_pilots=' + str(n_pilots) + '_bits=' + str(n_bits) + '_0mean=' + str(params['zero_mean_gmm']) + \
'_sums=' + str(n_summands_or_proba) + f'_ptype={pilot_type}_' \
f'qtype={quantizer_type}_{cov_type}.csv'
with open(file_name, 'w') as myfile:
wr = csv.writer(myfile, lineterminator='\n')
wr.writerows(mse_list)
if eval_rate:
file_name = f'./results/' + params['model_type'] + '/' + date_time + '_ant=' + str(n_antennas) + \
'_path=' + str(n_path) + '_ntrain=' + str(n_train_ch) + '_comp=' + str(n_components) + \
'_pilots=' + str(n_pilots) + '_bits=' + str(n_bits) + '_0mean=' + str(params['zero_mean_gmm']) + \
'_sums=' + str(n_summands_or_proba) + f'_ptype={pilot_type}_' \
f'qtype={quantizer_type}_{cov_type}_rate.csv'
with open(file_name, 'w') as myfile:
wr = csv.writer(myfile, lineterminator='\n')
wr.writerows(rate_list)