-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_classify.py
308 lines (250 loc) · 12 KB
/
train_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
'''
@Author : Jian Zhang
@Init Date : 2023-05-17 13:57
@File : train_classify.py
@IDE : PyCharm
@Description: Binary classification model, using DATASET 'XrayClassifyDataset'
'''
import os
import time
import cv2
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import yaml
import numpy as np
import random
import sklearn
from augmentation.medical_augment import XrayTrainTransform
import models
import dataset
import sklearn
import losses
from utils import Logger, AverageMeter, mkdir_p, progress_bar, save_checkpoint
def main(config_file):
global common_config, best_acc
best_acc = 0
# parse config of model training
with open(config_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
common_config = config['common']
mkdir_p(common_config['save_path'])
# initial dataset and dataloader
data_config = config['dataset']
print('==> Preparing dataset %s' % data_config['type'])
transform_train = XrayTrainTransform()
# create dataset for training and validating
trainset = dataset.__dict__[data_config['type']](
data_config['train_list'], data_config['train_meta'], transform_train,
prefix=data_config['prefix'], size=(data_config['W_size'], data_config['H_size']))
validset = dataset.__dict__[data_config['type']](
data_config['valid_list'], data_config['valid_meta'], None,
prefix=data_config['prefix'], size=(data_config['W_size'], data_config['H_size']))
# create dataloader for training and validating
'''
kepp all images having same size in ONE BATCH
'''
def collate_syn(batch):
sizes_w = [item[0].shape[1] for item in batch]
sizes_h = [item[0].shape[0] for item in batch]
# print(sizes_w, sizes_h)
max_w, max_h = max(sizes_w), max(sizes_h)
# print('max size:%d %d' % (max_w, max_h))
packaged_images = []
packaged_labels = []
for item in batch:
img = cv2.resize(item[0], (max_w, max_h))
img = torch.FloatTensor(img.transpose((2, 0, 1)))
packaged_images.append(img)
packaged_labels.append(item[1])
tensor1 = torch.stack(packaged_images)
tensor2 = torch.stack(packaged_labels)
return tensor1, tensor2
trainloader = data.DataLoader(
trainset, batch_size=common_config['train_batch'], shuffle=True, num_workers=5)
validloader = data.DataLoader(
validset, batch_size=common_config['valid_batch'], shuffle=False, num_workers=5)
# Model
print("==> creating model '{}'".format(common_config['arch']))
model = models.__dict__[common_config['arch']](num_classes=data_config['num_classes'])
model = torch.nn.DataParallel(model)
use_cuda = torch.cuda.is_available()
if use_cuda:
model = model.cuda()
cudnn.benchmark = True
from torchsummary import summary
# summary(model, (3, 960, 1920))
# loss & optimizer
# criterion = losses.__dict__[config['loss']['type']]()
criterion = torch.nn.BCELoss()
optimizer = optim.SGD(
filter(
lambda p: p.requires_grad,
model.parameters()),
lr=common_config['lr'],
momentum=common_config['momentum'],
weight_decay=common_config['weight_decay'])
if args.visualize:
checkpoints = torch.load(os.path.join('checkpoints/', 'model_best_{}.pth.tar'.format(common_config['project'])))
model.load_state_dict(checkpoints['state_dict'], False)
valid_loss, valid_acc, valid_sens, valid_spec, valid_prec, auc, ci_95 = vaild(validloader, model, criterion, use_cuda, visualize=args.visualize)
save_folder = os.path.join(common_config['save_path'], 'visualized_results/')
mkdir_p(save_folder)
indicators_path = os.path.join('experiments/', common_config['project'], 'indicators_of_valid.txt')
with open(indicators_path, 'a') as f:
f.write(time.strftime('%Y-%m-%d %H:%M:%S') + '\n')
f.write('loss: %.4f' %(valid_loss) + '\n')
f.write('accuracy: %.4f' %(valid_acc) + '\n')
f.write('sensitivity: %.4f' %(valid_sens) + '\n')
f.write('specificity: %.4f' %(valid_spec) + '\n')
f.write('precision: %.4f' %(valid_prec) + '\n')
f.write('F1: %.4f' %(2*valid_prec*valid_sens/(valid_prec+valid_sens)) + '\n')
f.write('AUC: %.4f(95%%CI: %4f~%4f)' %(auc, ci_95[0], ci_95[1]) + '\n')
f.write('━━●●━━━━━━━━━━━━━' + '\n')
#TODO: 分类结果写入 save_folder 目录中
return
# logger
logger_path = os.path.join('experiments/', common_config['project'])
mkdir_p(logger_path)
title = 'Wrist X-ray Image Quality Assessment using ' + common_config['arch']
logger = Logger(os.path.join(logger_path, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
# Train and val
for epoch in range(common_config['epoch']):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, common_config['epoch'], common_config['lr']))
train_loss, train_acc = train(trainloader, model, criterion, optimizer, use_cuda)
valid_loss, valid_acc = vaild(validloader, model, criterion, use_cuda)
# append logger file
logger.append([common_config['lr'], train_loss, valid_loss, train_acc, valid_acc])
# save model
is_best = valid_acc > best_acc
best_acc = max(valid_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': valid_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, save_path='checkpoints/',
ckp_name='checkpoint_{}.pth.tar'.format(common_config['project']),
best_name='model_best_{}.pth.tar'.format(common_config['project']))
print('Best acc: %.4f' %(best_acc))
logger.close(best_acc)
def train(trainloader, model, criterion, optimizer, use_cuda):
# switch to train mode
model.train()
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
end = time.time()
for batch_idx, datas in enumerate(trainloader):
inputs, targets = datas
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute gradient and do SGD step
optimizer.zero_grad()
outputs = model(inputs)
outputs = outputs.view(outputs.size(0), -1)
targets = targets.view(targets.size(0), -1)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
predict = outputs > 0.5
predict_res = [torch.equal(a, b) for a, b in zip(predict, targets)]
losses.update(loss.item(), inputs.size(0))
acc.update(sum(predict_res) / len(predict_res), len(predict_res))
progress_bar(batch_idx, len(trainloader), 'Loss: %.2f | Acc: %.2f' % (losses.avg, acc.avg))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return (losses.avg, acc.avg)
def vaild(validloader, model, criterion, use_cuda, visualize=None):
# switch to evaluate mode
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter() # accuracy: (TP+TN)/(TP+TN+FP+FN)
sens = AverageMeter() # sensitivity: TP/(TP+FN) <==> recall
spec = AverageMeter() # specificity: TP/(FP+TN)
prec = AverageMeter() # precision: TP/(TP+FP)
end = time.time()
labelList = []
predList =[]
for batch_idx, (inputs, targets) in enumerate(validloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
with torch.no_grad():
outputs = model(inputs)
# calculating AUC, drawing ROC
for i, j in zip(targets.tolist(), outputs.tolist()):
labelList.append(i[0]) # 0-negative 1-positive
predList.append(j[0])
outputs = outputs.view(outputs.size(0), -1)
targets = targets.view(targets.size(0), -1)
loss = criterion(outputs, targets)
predict = outputs > 0.5
predict_acc = [torch.equal(a, b) for a, b in zip(predict, targets)]
if visualize:
predict_sens = [torch.equal(a, b) for a, b in zip(predict, targets) if torch.equal(b, torch.FloatTensor([1., 0.]).cuda())]
predict_spec = [torch.equal(a, b) for a, b in zip(predict, targets) if torch.equal(b, torch.FloatTensor([0., 1.]).cuda())]
predict_prec = [torch.equal(a, b) for a, b in zip(predict, targets) if torch.equal(a, torch.FloatTensor([1., 0.]).cuda())]
if len(predict_sens) != 0:
sens.update(sum(predict_sens) / len(predict_sens), len(predict_sens))
if len(predict_spec) != 0:
spec.update(sum(predict_spec) / len(predict_spec), len(predict_spec))
if len(predict_prec) != 0:
prec.update(sum(predict_prec) / len(predict_prec), len(predict_prec))
# print(len(predict_sens), len(predict_spec), len(predict_prec))
losses.update(loss.item(), inputs.size(0))
acc.update(sum(predict_acc) / len(predict_acc), len(predict_acc))
progress_bar(batch_idx, len(validloader), 'Loss: %.2f | Acc: %.2f' % (losses.avg, acc.avg))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if visualize:
# 抽样1000次计算CI
labelList_CI = []
predList_CI = []
auc_values = []
idx_list = list(np.arange(len(labelList)))
for i in np.arange(1000):
idx = random.sample(idx_list, int(len(labelList)*0.7))
idx = list(idx)
for j in idx:
labelList_CI.append(labelList[j])
predList_CI.append(predList[j])
labelArray = np.array(labelList_CI)
predArray = np.array(predList_CI)
roc_auc = sklearn.metrics.roc_auc_score(labelArray, predArray)
auc_values.append(roc_auc)
ci_95 = np.percentile(auc_values, (2.5, 97.5))
# 计算FPR、TPR, 输出AUC(95%CI)
fpr, tpr, _ = sklearn.metrics.roc_curve(np.array(labelList), np.array(predList))
auc = round(sklearn.metrics.auc(fpr, tpr), 4)
ci_95 = (round(ci_95[0], 4), round(ci_95[1], 4))
return (losses.avg, acc.avg, sens.avg, spec.avg, prec.avg, auc, ci_95)
else:
return (losses.avg, acc.avg)
def adjust_learning_rate(optimizer, epoch):
global common_config
if epoch in common_config['schedule']:
common_config['lr'] *= common_config['gamma']
for param_group in optimizer.param_groups:
param_group['lr'] = common_config['lr']
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Classify for Medical Image')
# model related, including Architecture, path, datasets
# parser.add_argument('--config-file', type=str, default='configs/config_classify_artifact.yaml')
parser.add_argument('--config-file', type=str, default='configs/config_classify_position.yaml')
# parser.add_argument('--config-file', type=str, default='configs/config_classify_overlap.yaml')
parser.add_argument('--gpu-id', type=str, default='0,1,2')
parser.add_argument('--visualize', action='store_false')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
main(args.config_file)