-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinput.py
73 lines (69 loc) · 3.02 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from PIL import Image
import random
import numpy as np
import cv2,os,atexit
from time import clock
def read_yale_images(test):
if(test == "general"):
training_dataset = ['centerlight','glasses','happy','leftlight','noglasses','normal']
testing_dataset = ['rightlight','sad','sleepy','surprised','wink']
elif(test == "illumination"):
training_dataset = ['glasses','noglasses','normal']
testing_dataset = ['centerlight','leftlight','rightlight']
elif(test == "expression"):
training_dataset = ['noglasses','normal']
testing_dataset = ['happy','sleepy','sad','wink','surprised']
elif(test == "glasses"):
training_dataset = ['noglasses','normal']
testing_dataset = ['glasses']
elif(test == "choice"):
training_dataset = ['centerlight','glasses','happy','leftlight','noglasses']
testing_dataset = ['normal','rightlight','sad','sleepy','surprised','wink']
training,testing,testing_answer,training_answer = [],[],[],[]
for i in range(1,16):
if(i < 10):
filename = "subject0"+str(i)+"."
else:
filename = "subject"+str(i)+"."
for item in testing_dataset:
absName=os.path.join("yalefaces",filename+item+".pgm")
img = Image.open(absName)
img = img.convert("L")
testing.append(np.asarray(img, dtype=np.uint8))
testing_answer.append(absName)
for item in training_dataset:
absName=os.path.join("yalefaces",filename+item+".pgm")
img = Image.open(absName)
img = img.convert("L")
training.append(np.asarray(img, dtype=np.uint8))
training_answer.append(absName)
print "training: ",len(training),", testing:",len(testing)
return [training,training_answer,testing,testing_answer]
def read_orl_images(test):
if(test == 'general'):
training_dataset = ['1','2','3','4','5']
testing_dataset = ['6','7','8','9','10']
elif(test == 'pose'):
training_dataset = ['1','3','7','8']
testing_dataset = ['2','4','5','6','9','10']
elif(test == "choice"):
training_dataset = ['1','3','5','7','9']
testing_dataset = ['2','4','6','8','10']
count = 0
training,testing,testing_answer,training_answer = [],[],[],[]
for i in range(1,41):
for j in testing_dataset:
storeName=os.path.join("s"+str(i),j+".pgm")
absName=os.path.join("orl_faces",storeName)
img = cv2.imread(absName,0)
testing.append(np.asarray(img, dtype=np.uint8))
storeName
testing_answer.append(absName)
for j in training_dataset:
storeName=os.path.join("s"+str(i),j+".pgm")
absName=os.path.join("orl_faces",storeName)
img = cv2.imread(absName,0)
training.append(np.asarray(img, dtype=np.uint8))
training_answer.append(absName)
print "training : ",len(training)," , testing :",len(testing)
return [training,training_answer,testing,testing_answer]