-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlem.py
215 lines (192 loc) · 7.39 KB
/
lem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import cv2, platform
import sys,os,glob
import errno,random
from PIL import Image
from input import *
from utility import *
import operator,math,atexit
from time import clock
minDist=100000
def CannyThreshold(img,lowThreshold,ratio,kernel_size):
# gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
detected_edges = cv2.GaussianBlur(img,(3,3),0)
detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size)
dst = cv2.bitwise_and(img,img,mask = detected_edges) # just add some colours to edges from original image.
return dst
def extract_corners(gray):
corners=cv2.goodFeaturesToTrack(gray,100,0.01,6)
return corners
def extract_contours(gray):
ret,thresh1 = cv2.threshold(gray,127,255,0)
contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
contours= np.vstack(contours).squeeze()
return contours
def calc_distance(a,b):
maxDist=0
for i in a:
minB=1000000
for j in b:
(x1,y1)=i.ravel()
(x2,y2)=j.ravel()
dx=x1-x2
dy=y1-y2
tempDist= dx*dx + dy*dy
if(tempDist<minB):
minB=tempDist
elif(tempDist == 0):
break
maxDist +=minB
if(maxDist>minDist):
return 10000000
return maxDist
def hausdroff_distance(a,b):
a= np.int0(a)
b= np.int0(b)
maxDistAB = calc_distance(a,b)
if(maxDistAB==10000000):
return maxDistAB
maxDistBA = calc_distance(b,a)
if(maxDistBA==10000000):
return maxDistAB
maxDist = max(maxDistAB, maxDistBA)
return math.sqrt(maxDist)
def predict_hausdroff(testing_corners,training_corners,training_answer):
countJ=0
distances=[]
for j in training_corners:
dist=hausdroff_distance(testing_corners,j)
distances.append(dist)
minDist=min(distances)
#print "---",distances
#print "***",minDist
#print training_answer[countJ]," dist is= ",dist
countJ+=1
min_index, min_value = min(enumerate(distances), key=operator.itemgetter(1))
result=training_answer[min_index]
return result
def test_yale(test):
projections = []
success = []
failure = []
print "TESTING YALE DATABASE---- LINE EDGE MAP"
training, training_answer, testing, testing_answer = [],[],[],[]
[training, training_answer, testing, testing_answer] = read_yale_images(test)
print "read images"
training_canny,testing_canny,testing_corners,training_corners=[],[],[],[]
if platform.system()=="Windows":
look="\\"
else:
look="/"
for i in training:
modified = CannyThreshold(i,50,3,3)
training_canny.append(modified)
# gray = cv2.cvtColor(modified,cv2.COLOR_BGR2GRAY)
training_corners.append(extract_corners(modified))
for i in testing:
modified = CannyThreshold(i,50,3,3)
testing_canny.append(modified)
# gray = cv2.cvtColor(modified,cv2.COLOR_BGR2GRAY)
testing_corners.append(extract_corners(modified))
print "extracted corners"
#predict_LEM(testing_corners[0],training_corners[0])
##################################
if(test == "choice"):
return testing_corners, training_corners, training_answer, testing_answer
###################################
countI=0
count=0
#start clock
startTime=clock()
for i in testing_corners:
result=predict_hausdroff(i,training_corners,training_answer)
testAns=testing_answer[countI]
print result," MATCHED WITH ", testAns
if(result[:result.find('.')] == testAns[:testAns.find('.')]):
print "HIT!"
count+=1
success.append((testAns,result))
else:
failure.append((testAns,result))
countI+=1
endTime=clock()
#end clock
totalTime=endTime-startTime
print "total time = ", totalTime
singleTime=float(totalTime)/len(testing)
print "single time = ", singleTime
singleTimeString=formatTime(secondsToStr(singleTime))
totalTimeString=formatTime(secondsToStr(totalTime))
accuracy = (float(count)/len(testing))*100
print accuracy,"\n", totalTimeString, "\n", singleTimeString
print len(success),len(failure)
failure_Path="LEM_yale_failure_"+test+".png"
success_Path="LEM_yale_success_"+test+".png"
success_copyPath=os.path.join(os.path.join("static","images"),success_Path)
failure_copyPath=os.path.join(os.path.join("static","images"),failure_Path)
plot(failure_copyPath, failure[:4*(len(failure)/4)])
plot(success_copyPath, success[:4])
return failure_Path,success_Path, accuracy, singleTimeString,totalTimeString, len(training), len(testing), count
def test_orl(test):
projections = []
success = []
failure = []
print "TESTING ORL DATABASE ---- LINE EDGE MAP"
training, training_answer, testing, testing_answer = [],[],[],[]
[training, training_answer, testing, testing_answer] = read_orl_images(test)
print "read images"
training_canny,testing_canny,testing_corners,training_corners=[],[],[],[]
if platform.system()=="Windows":
look="\\"
else:
look="/"
for i in training:
modified = CannyThreshold(i,50,3,3)
training_canny.append(modified)
# gray = cv2.cvtColor(modified,cv2.COLOR_BGR2GRAY)
training_corners.append(extract_corners(modified))
for i in testing:
modified = CannyThreshold(i,50,3,3)
testing_canny.append(modified)
# gray = cv2.cvtColor(modified,cv2.COLOR_BGR2GRAY)
testing_corners.append(extract_corners(modified))
print "extracted corners"
#predict_LEM(testing_corners[0],training_corners[0])
##################################
if(test == "choice"):
return testing_corners, training_corners, training_answer, testing_answer
###################################
countI=0
count=0
#start clock
startTime=clock()
for i in testing_corners:
result=predict_hausdroff(i,training_corners,training_answer)
testAns=testing_answer[countI]
print result," MATCHED WITH ",testAns
if(result[:result.find(look,12)] == testAns[:testAns.find(look,12)]):
print "HIT!"
count+= 1
success.append((testAns,result))
else:
failure.append((testAns,result))
countI+=1
endTime=clock()
#end clock
totalTime=endTime-startTime
print "total time = ", totalTime
singleTime=float(totalTime)/len(testing)
print "single time = ", singleTime
print "seconds to string " , secondsToStr(singleTime)
print "seconds to string total" , secondsToStr(totalTime)
singleTimeString=formatTime(secondsToStr(singleTime))
totalTimeString=formatTime(secondsToStr(totalTime))
accuracy = (float(count)/len(testing))*100
print accuracy,"\n", totalTimeString, "\n", singleTimeString
failure_Path="LEM_orl_failure_"+test+".png"
success_Path="LEM_orl_success_"+test+".png"
success_copyPath=os.path.join(os.path.join("static","images"),success_Path)
failure_copyPath=os.path.join(os.path.join("static","images"),failure_Path)
plot(failure_copyPath, failure[:4*(len(failure)/4)])
plot(success_copyPath, success[:16])
return failure_Path,success_Path, accuracy, singleTimeString,totalTimeString, len(training), len(testing), count