-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun.py
313 lines (264 loc) · 11.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
"""
执行模型训练、测试等
"""
import argparse
import os
import sys
import logging
from model import *
from command import *
from util import *
commands = ['config', 'train', 'test', 'testfuture', 'testseq', 'stat',
'statoverall', 'predict', 'trend', 'kt', 'corr', 'at', 'corr2']
models = ['RNN', 'Attn', 'RA', 'RADecay', 'LSTMM', 'LSTMA', 'DKT',
'DKNM', 'DKNA', 'EKTM', 'EKTA', 'DKVMN']
class Config:
def __init__(self, parser):
subs = parser.add_subparsers(title='models available', dest='model')
subs.required = True
group_options = set()
for model in models:
sub = subs.add_parser(model, formatter_class=parser_formatter)
group = sub.add_argument_group('setup')
Model = get_class(model)
Model.add_arguments(group)
for action in group._group_actions:
group_options.add(action.dest)
def save(args):
for file in os.listdir(args.workspace):
if file.endswith('.json'):
os.remove(os.path.join(args.workspace, file))
model = args.model
Model = get_class(model)
setup = {name: value for (name, value) in args._get_kwargs()
if name in group_options}
conf = os.path.join(args.workspace,
str(model) + '.json')
m = Model(setup)
print('model: %s, setup: %s' % (model, str(m.args)))
save_config(m, conf)
sub.set_defaults(func=save)
def run(self, args):
pass
class Train:
def __init__(self, parser):
parser.add_argument('-N', '--epochs', type=int, default=1,
help='number of epochs to train')
parser.add_argument('-d', '--dataset', required=True)
parser.add_argument('-s', '--split_method',
choices=['future', 'user', 'old', 'none'])
parser.add_argument('-f', '--frac', default=0.1, type=float,
help='train data fraction')
parser.add_argument('-rl', '--random_level', default=0, type=int,
help='random level')
parser.add_argument('-l', '--loss', default='mse',
choices=['mse', 'cross_entropy'])
parser.add_argument('--print_every', type=int, default=10,
help='logging interval')
parser.add_argument('--save_every', type=int, default=1000,
help='saving interval')
parser.add_argument('-ik', '--input_knowledge', action='store_true')
parser.add_argument('-it', '--input_text',action='store_true')
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
# train(model, args)
trainn(model, args)
class Test:
def __init__(self, parser):
parser.add_argument('-e', '--snapshot',
help='model snapshot to test with')
parser.add_argument('-d', '--dataset',
required=True)
parser.add_argument('-t', '--test_as_seq', action='store_true',
help='test sequences using output scores')
parser.add_argument('-o', '--test_on_one', action='store_true',
help='test on next one')
parser.add_argument('-z', '--test_on_last', action='store_true',
help='test last')
parser.add_argument('-r', '--ref_len', type=int, default=0,
help='length of sequence with true scores')
parser.add_argument('-rs', '--ref_set')
parser.add_argument('-s', '--split_method',
choices=['future', 'user', 'old', 'none'])
parser.add_argument('-f', '--frac', default=0.1, type=float,
help='train data fraction')
parser.add_argument('-rl', '--random_level', default=0, type=int,
help='random level')
parser.add_argument('-l', '--loss', default='mse',
choices=['mse', 'cross_entropy'])
parser.add_argument('--print_every', type=int, default=10,
help='logging interval')
parser.add_argument('-ik', '--input_knowledge', action='store_true')
parser.add_argument('-it', '--input_text',action='store_true')
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
test(model, args)
class Testseq:
def __init__(self, parser):
parser.add_argument('-e', '--snapshot',
help='model snapshot to test with')
parser.add_argument('-d', '--dataset',
required=True)
parser.add_argument('-r', '--ref_len', type=int, default=0,
help='length of sequence with true scores')
parser.add_argument('-rs', '--ref_set')
parser.add_argument('-s', '--split_method',
choices=['future', 'user', 'old', 'none'])
parser.add_argument('-f', '--frac', default=0.1, type=float,
help='train data fraction')
parser.add_argument('-rl', '--random_level', default=0, type=int,
help='random level')
parser.add_argument('-l', '--loss', default='mse',
choices=['mse', 'cross_entropy'])
parser.add_argument('--print_every', type=int, default=10,
help='logging interval')
parser.add_argument('-ik', '--input_knowledge', action='store_true')
parser.add_argument('-it', '--input_text',action='store_true')
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
# test(model, args)
testseq(model, args)
class Testfuture:
def __init__(self, parser):
parser.add_argument('-e', '--snapshot',
help='model snapshot to test with')
parser.add_argument('-d', '--dataset',
required=True)
parser.add_argument('-r', '--ref_len', type=int, default=0,
help='length of sequence with true scores')
parser.add_argument('-rs', '--ref_set')
parser.add_argument('-s', '--split_method',
choices=['future', 'user', 'old', 'none'])
parser.add_argument('-f', '--frac', default=0.1, type=float,
help='train data fraction')
parser.add_argument('-rl', '--random_level', default=0, type=int,
help='random level')
parser.add_argument('-l', '--loss', default='mse',
choices=['mse', 'cross_entropy'])
parser.add_argument('--print_every', type=int, default=10,
help='logging interval')
parser.add_argument('-ik', '--input_knowledge', action='store_true')
parser.add_argument('-it', '--input_text',action='store_true')
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
# test(model, args)
testfuture(model, args)
class Stat:
def __init__(self, parser):
parser.add_argument('result_file')
parser.add_argument('-a', '--with_auc', action='store_true')
parser.add_argument('-r', '--round_score', action='store_true')
parser.add_argument('-s', '--short', action='store_true')
def run(self, args):
stat(open(args.result_file), args.with_auc, args.round_score)
class Statoverall:
def __init__(self, parser):
parser.add_argument('result_file')
parser.add_argument('-a', '--with_auc', action='store_true')
parser.add_argument('-r', '--round_score', action='store_true')
parser.add_argument('-s', '--short', action='store_true')
def run(self, args):
stat_overall(open(args.result_file), args.with_auc, args.round_score)
class Trend:
def __init__(self, parser):
parser.add_argument('-e', '--snapshot',
help='model snapshot to test with')
parser.add_argument('-d', '--dataset', required=True)
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
if use_cuda:
model.cuda()
trend(model, args.dataset)
class Predict:
def __init__(self, parser):
parser.add_argument('-e', '--snapshot',
help='model snapshot to test with')
def run(self, args):
for name in os.listdir(args.workspace):
if name.endswith('.json'):
Model = get_class(name.split('.')[0])
config = os.path.join(args.workspace, name)
break
else:
print('you must run config first!')
sys.exit(1)
model = load_config(Model, config)
predict(model, args)
def get_class(name):
return globals()[name[0].upper() + name[1:]]
if __name__ == '__main__':
for command in commands:
sub = subparsers.add_parser(command, formatter_class=parser_formatter)
subcommand = get_class(command)(sub)
sub.set_defaults(func=subcommand.run)
args = parser.parse_args()
workspace = args.workspace
try:
os.makedirs(os.path.join(workspace, 'snapshots'))
os.makedirs(os.path.join(workspace, 'results'))
os.makedirs(os.path.join(workspace, 'logs'))
except OSError:
pass
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logFormatter = ColoredFormatter('%(levelname)s %(asctime)s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
fileFormatter = logging.Formatter('%(levelname)s %(asctime)s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
if args.command != 'config':
fileHandler = logging.FileHandler(os.path.join(workspace, 'logs',
args.command + '.log'))
fileHandler.setFormatter(fileFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
try:
args.func(args)
except KeyboardInterrupt:
logging.warn('cancelled by user')
except Exception as e:
import traceback
sys.stderr.write(traceback.format_exc())
logging.warn('exception occurred: %s', e)