forked from ovaexpert/ovarian-tumor-aggregation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimilarities.R
158 lines (128 loc) · 6.14 KB
/
similarities.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
source('similarities-helpers.R')
#########################
# Similarity based classifiers
#########################
# *m* passed to all aggregation functions as argument is matrix.
# str(m) gives following output:
# > num [1:2, 1:6] 0.676 0.781 0.639 0.833 0.688 ...
# The lower and upper bounds of i-th interval diagnosis can be obtained via:
# m[1,i] and m[2,i]
# Each classifier returns binary diangosis or *NA*.
#########################
GEN.KNN.SIM = function(sim.params, k, nbs.selector, vote.strategy, optimisation = F) {
force(sim.params);force(k);force(nbs.selector);force(vote.strategy);force(optimisation)
SIM = GEN.SIM.JACCARD(sim.params, optimisation=optimisation)
return(function(training.set){
force(training.set)
return(function(m){
force(m)
sims = lapply(training.set, function(nb){
return(SIM(list(lower=nb$m[1,], upper=nb$m[2,]), list(lower=m[1,], upper=m[2,])))
})
sel = nbs.selector(sims, k)
nbsTypes = sapply(training.set[sel], "[[", 'type')
return(vote.strategy(nbsTypes, sims[sel]))
})
})
}
GEN.IVFC.SIM = function(sim.params, classes, sim.aggr, summary.strategy, optimisation = F) {
force(sim.params);force(classes);force(sim.aggr);force(summary.strategy);force(optimisation)
SIM = GEN.SIM.JACCARD(sim.params, optimisation=optimisation)
return(function(prototypes){
force(prototypes)
return(function(m){
force(m)
sims = lapply(prototypes, function(nb){
return(SIM(list(lower=nb$m[1,], upper=nb$m[2,]), list(lower=m[1,], upper=m[2,])))
})
cls = sapply(prototypes, '[[','type')
toReturn = sapply(classes, function(cl){
return(sim.aggr(sims[which(cls == cl)]))
})
# columns represent classes, two rows lower and upper similarity bound
colnames(toReturn) = as.character(classes)
return(list(type = summary.strategy(toReturn), ivfc = toReturn))
})
})
}
KNN.JACCARD = apply(cbind(expand.grid(SIM.PARAMS, KS, NBS.SELECTORS, VOTE.STRATEGIES),
expand.grid(SIM.PARAMS.NAME, KS, NBS.SELECTORS.NAME, VOTE.STRATEGIES.NAME)),
1, function(row){
list(GEN.KNN.SIM(row[[1]],row[[2]], row[[3]], row[[4]]),
paste('knn_', row[[6]],'_(', row[[5]], ')_(', row[[7]], ')_', row[[8]], sep=''),
'Jaccard', 'Interval')
})
KNN.JACCARD.1 = apply(cbind(expand.grid(SIM.PARAMS, NBS.SELECTORS),
expand.grid(SIM.PARAMS.NAME, NBS.SELECTORS.NAME)),
1, function(row){
list(GEN.KNN.SIM(row[[1]], 1, row[[2]], VOTE.STRATEGY.ALL),
paste('knn_', 1,'_(', row[[3]], ')_(', row[[4]], ')_', 'all', sep=''),
'Jaccard', 'Interval')
})
KNN.JACCARD.2 = apply(cbind(expand.grid(SIM.PARAMS, NBS.SELECTORS, VOTE.STRATEGIES[2:3]),
expand.grid(SIM.PARAMS.NAME, NBS.SELECTORS.NAME, VOTE.STRATEGIES.NAME[2:3])),
1, function(row){
list(GEN.KNN.SIM(row[[1]], 2, row[[2]], row[[3]]),
paste('knn_', 2,'_(', row[[4]], ')_(', row[[5]], ')_', row[[6]], sep=''),
'Jaccard', 'Interval')
})
# at least 2 classifiers must be defined
# name and class must not contain '-' and '=' signs (must be valid data.frame column name)
KNN.LIST = c(KNN.JACCARD, KNN.JACCARD.1, KNN.JACCARD.2)
if(is.finite(CLASSIFIER.NUMBER.LIMIT)){
KNN.LIST = KNN.LIST[sample(length(KNN.LIST), CLASSIFIER.NUMBER.LIMIT)]
}
KNN.LIST = sample(KNN.LIST, length(KNN.LIST))
KNN = sapply(KNN.LIST,'[[',1)
KNN.NAME = sapply(KNN.LIST,'[[',2)
KNN.CLASS = sapply(KNN.LIST,'[[',3)
KNN.SUBCLASS = sapply(KNN.LIST,'[[',4)
KNN.BINDED.DESCRIPTION = data.frame(Method=KNN.NAME,
Class="kNN",
Subclass=KNN.CLASS,
Subsubclass=KNN.SUBCLASS)
IVFC.JACCARD = apply(cbind(expand.grid(SIM.PARAMS, INTERVAL.AGGRS, SUMMARIES),
expand.grid(SIM.PARAMS.NAME, INTERVAL.AGGRS.NAME, SUMMARIES.NAME)),
1, function(row){
list(GEN.IVFC.SIM(row[[1]], list(0, 1), row[[2]], row[[3]]),
paste('ivfc_(', row[[4]],')_', row[[5]], '_', row[[6]], sep=''),
'Jaccard', 'Interval')
})
IVFC.LIST = c(IVFC.JACCARD)
if(is.finite(CLASSIFIER.NUMBER.LIMIT)){
IVFC.LIST = IVFC.LIST[sample(length(IVFC.LIST), CLASSIFIER.NUMBER.LIMIT)]
}
IVFC.LIST = sample(IVFC.LIST, length(IVFC.LIST))
IVFC = sapply(IVFC.LIST,'[[',1)
IVFC.NAME = sapply(IVFC.LIST,'[[',2)
IVFC.CLASS = sapply(IVFC.LIST,'[[',3)
IVFC.SUBCLASS = sapply(IVFC.LIST,'[[',4)
IVFC.BINDED.DESCRIPTION = data.frame(Method=IVFC.NAME,
Class="IVFC",
Subclass=IVFC.CLASS,
Subsubclass=IVFC.SUBCLASS)
getOptimizedClassifiers = function(inputData, performanceMeasure) {
df = subset(inputData, Measure==performanceMeasure & Method %in% KNN.NAME)
if(nrow(df)>0){
if(PERFORMANCE.MEASURE.DESC){
KNN.OPT = arrange(df, desc(Value))[1:min(nrow(df), CLASSIFIER.OPTIMISATION.NUMBER), 1]
} else {
KNN.OPT = arrange(df, Value)[1:min(nrow(df), CLASSIFIER.OPTIMISATION.NUMBER), 1]
}
} else {
KNN.OPT = c()
}
df = subset(inputData, Measure==performanceMeasure & Method %in% IVFC.NAME)
if(nrow(df)>0){
if(PERFORMANCE.MEASURE.DESC) {
IVFC.OPT = arrange(df, desc(Value))[1:min(nrow(df), CLASSIFIER.OPTIMISATION.NUMBER), 1]
} else {
IVFC.OPT = arrange(df, Value)[1:min(nrow(df), CLASSIFIER.OPTIMISATION.NUMBER), 1]
}
} else {
IVFC.OPT = c()
}
SIMILARITIES.OPT = c(KNN.OPT,
IVFC.OPT)
return(SIMILARITIES.OPT)
}