Skip to content

Latest commit

 

History

History
49 lines (29 loc) · 1.32 KB

venv.md

File metadata and controls

49 lines (29 loc) · 1.32 KB

Creating a virtual environment for Computer Vision

Note:: If you plan to use TensorFlow 2, please install a Python version compatible with Tensorflow

Complete video guide can be found here.

Following steps describe only the creation of virtual environments.

  1. Open command Prompt and follow the steps.

  2. Change the Directory to: C:\Python39

  3. Upgrade pip: python -m pip install --upgrade pip

  4. Install virtualenv package: python -m pip install virtualenv

  5. Create virtual environment: virtualenv cv

  6. Change the directory to: C:\Python39\cv\Scripts

  7. Activate the cv environment: activate cv

  8. Then install the required packages

pip install numpy
pip install matplotlib
pip install opencv-python
pip install jupyterlab

Editor Configurations

Using Jupyter Lab

Environment created above can be activated in any folder through GIT Bash using the following commands.

$ source /c/Python39/cv/Scripts/activate
$ jupyter lab

Using Visual Studio Code

Extensions to be installed

  • Jupyter Extension for Visual Studio Code
  • TabNine Autocomplete AI: JavaScript, Python, TypeScript, PHP, C/C++, HTML/CSS, Go, Java, Ruby, C#, Rust, SQL, Bash, Kotlin, Julia, Lua, OCaml, Perl, Haskell, React