-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·337 lines (313 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import argparse
import logging
import os
import random
import sys
from datetime import datetime
import torch
import torchmetrics as tm
from torch.utils.data import RandomSampler, WeightedRandomSampler, DataLoader
from model import ProTact
from utils.data import get_dataset
from utils.utils import setCpu, Seed_everything, evaluate_PPI, print_metrics
from utils.deepinteract_utils import dgl_picp_collate
setCpu(16)
Seed_everything(42)
parser = argparse.ArgumentParser(description="Train your own model.")
parser.add_argument("-m", "--mode", type=int, default=0, help="mode specify the model to use.")
parser.add_argument("-d", "--data", type=str, default="dips", help="data specify the data to use.")
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--sample_n", type=int, default=20000, help="number of samples in one epoch.")
parser.add_argument("--debug", action="store_true")
parser.add_argument(
"--restart", type=str, default=None, help="continue the training from the model we saved."
)
parser.add_argument(
"--nuv",
action="store_true",
)
parser.add_argument(
"--nuv-angle",
action="store_true",
)
parser.add_argument(
"--protrans",
action="store_true"
)
parser.add_argument(
"--esm2",
action="store_true"
)
parser.add_argument(
"--gnn-type",
type=str,
default="geotrans",
)
parser.add_argument(
"--hidden-dim",
type=int,
default=256,
)
parser.add_argument(
"--layers",
type=int,
default=2,
)
parser.add_argument(
"--interaction-type",
type=str,
default="HGCN",
)
parser.add_argument(
"--lr",
type=float,
default=1e-3,
)
parser.add_argument(
"--eta-min",
type=float,
default=1e-8,
)
parser.add_argument(
"--resultFolder", type=str, default="result/", help="information you want to keep a record."
)
parser.add_argument("--label", type=str, default="", help="information you want to keep a record.")
args = parser.parse_args()
timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M")
DEBUG = args.debug
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("")
logging.info(
f"""\
{' '.join(sys.argv)}
{timestamp}
{args.label}
{args.layers}
--------------------------------
"""
)
torch.multiprocessing.set_sharing_strategy("file_system")
train, train_after_warm_up, valid, test, all_pocket_test, info = get_dataset(
args.data, logging, nuv=args.nuv, nuv_angle=args.nuv_angle, esm2=args.esm2
)
logging.info(
f"data point train: {len(train)},"
f" train_after_warm_up: {len(train_after_warm_up) if train_after_warm_up is not None else 0},"
f" valid: {len(valid)},"
f" test: {len(test)}"
)
num_workers = 0
valid_batch_size = test_batch_size = args.batch_size
train_sampler = RandomSampler(train, replacement=True, num_samples=10)
valid_sampler = RandomSampler(valid, replacement=True, num_samples=10)
test_sampler = RandomSampler(test, replacement=True, num_samples=10)
if DEBUG:
train_loader = DataLoader(
train,
batch_size=args.batch_size,
# follow_batch=["x", "compound_pair"],
# sampler=train_sampler,
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
valid_loader = DataLoader(
valid,
batch_size=valid_batch_size,
# follow_batch=["x", "compound_pair"],
# sampler=valid_sampler,
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
test_loader = DataLoader(
test,
batch_size=test_batch_size,
# follow_batch=["x", "compound_pair"],
# sampler=test_sampler,
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
else:
train_loader = DataLoader(
train,
batch_size=args.batch_size,
# follow_batch=["x", "compound_pair"],
# sampler=sampler,
pin_memory=False,
shuffle=True,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
valid_loader = DataLoader(
valid,
batch_size=valid_batch_size,
# follow_batch=["x", "compound_pair"],
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
test_loader = DataLoader(
test,
batch_size=test_batch_size,
# follow_batch=["x", "compound_pair"],
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
if args.data == "db5":
train_loader = DataLoader(
train,
batch_size=args.batch_size,
# follow_batch=["x", "compound_pair"],
# sampler=sampler,
pin_memory=False,
shuffle=True,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
valid_loader = DataLoader(
valid,
batch_size=valid_batch_size,
# follow_batch=["x", "compound_pair"],
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
test_loader = DataLoader(
test,
batch_size=test_batch_size,
# follow_batch=["x", "compound_pair"],
shuffle=False,
pin_memory=False,
num_workers=num_workers,
collate_fn=dgl_picp_collate,
)
# import model is put here due to an error related to torch.utils.data.ConcatDataset after importing torchdrug.
from tankbind.model import *
device = "cuda"
model = ProTact(
num_node_input_feats=train.num_node_features if not args.paired else train.num_node_features + 788,
num_edge_input_feats=train.num_edge_features,
num_interact_layers=args.layers,
num_gnn_hidden_channels=args.hidden_dim,
output_emb=False,
).to(device)
if args.restart != 'None':
state_dict = torch.load(args.restart, map_location=device)
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
if "node_in_embedding.weight" not in state_dict:
state_dict.setdefault("node_in_embedding.weight", state_dict["node_origin_in_embedding.weight"])
state_dict.pop("node_origin_in_embedding.weight")
model.load_state_dict(state_dict)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-2)
num_classes = 2
threshold = 0.5
neg_class_weight = 1.0
pos_class_weight = 5.0
criterion = nn.CrossEntropyLoss()
metrics_list = []
valid_metrics_list = []
test_metrics_list = []
best_seletced = "loss"
best_value = 1
epoch_not_improving = 0
for epoch in range(200):
train_metric = {
"train_acc": tm.Accuracy(task="multiclass", num_classes=num_classes, average=None),
"train_prec": tm.Precision(task="multiclass", num_classes=num_classes, average=None),
"train_recall": tm.Recall(task="multiclass", num_classes=num_classes, average=None),
}
val_metric = {
"val_acc": tm.Accuracy(task="multiclass", num_classes=num_classes, average=None),
"val_prec": tm.Precision(task="multiclass", num_classes=num_classes, average=None),
"val_recall": tm.Recall(task="multiclass", num_classes=num_classes, average=None),
"val_auroc": tm.AUROC(task="multiclass", num_classes=num_classes, average=None),
"val_auprc": tm.AveragePrecision(task="multiclass", num_classes=num_classes, average=None),
"val_f1": tm.F1Score(task="multiclass", num_classes=num_classes, average=None),
}
test_metric = {
"test_acc": tm.Accuracy(task="multiclass", num_classes=num_classes, average=None),
"test_prec": tm.Precision(task="multiclass", num_classes=num_classes, average=None),
"test_recall": tm.Recall(task="multiclass", num_classes=num_classes, average=None),
"test_auroc": tm.AUROC(task="multiclass", num_classes=num_classes, average=None),
"test_auprc": tm.AveragePrecision(task="multiclass", num_classes=num_classes, average=None),
"test_f1": tm.F1Score(task="multiclass", num_classes=num_classes, average=None),
}
model.train()
batch_loss = []
data_it = tqdm(train_loader)
for data in data_it:
graph1, graph2, labels, files = data
# print(files, graph1.num_nodes(), graph2.num_nodes())
graph1 = graph1.to(device)
graph2 = graph2.to(device)
optimizer.zero_grad()
y_pred = model(graph1, graph2)
y = labels[0][:, 2].to(device)
pred = torch.flatten(y_pred[0].contiguous(), end_dim=-2)
pred_softmax = torch.softmax(pred, dim=-1)
for k, v in train_metric.items():
v(pred_softmax.detach().cpu(), y.detach().cpu())
loss = criterion(pred, y)
del pred, pred_softmax, y_pred, y
loss.backward()
optimizer.step()
batch_loss.append(loss.item())
data_it.set_description(f"{loss.item():.5}")
#scheduler.step()
metrics = {k: v.compute()[1] for k, v in train_metric.items()}
metrics.update({"loss": torch.Tensor(batch_loss).mean()})
logging.info(f"epoch {epoch:<4d}, train, " + print_metrics(metrics))
metrics_list.append(metrics)
model.eval()
with torch.no_grad():
metrics = evaluate_PPI(
valid_loader,
model,
device,
val_metric,
criterion,
)
if metrics[best_seletced] >= best_value:
# not improving. (both metrics say there is no improving)
epoch_not_improving += 1
ending_message = f" No improvement +{epoch_not_improving}"
else:
epoch_not_improving = 0
best_value = metrics[best_seletced]
ending_message = " "
valid_metrics_list.append(metrics)
logging.info(f"epoch {epoch:<4d}, valid, " + print_metrics(metrics) + ending_message)
torch.cuda.empty_cache()
if args.data != "db5":
with torch.no_grad():
metrics = evaluate_PPI(
test_loader,
model,
device,
test_metric,
criterion,
)
test_metrics_list.append(metrics)
logging.info(f"epoch {epoch:<4d}, test, " + print_metrics(metrics))
if not DEBUG:
saveFileName = f"{pre}/results/single_epoch_{epoch}.pt"
if epoch % 1 == 0:
torch.save(model.state_dict(), f"{pre}/models/epoch_{epoch}.pt")
# torch.save((y, y_pred), f"{pre}/results/epoch_{epoch}.pt")
if epoch_not_improving > 10:
# early stop.
print("early stop")
break
torch.cuda.empty_cache()
os.system(f"cp {timestamp}.log {pre}/")
torch.save((metrics_list, valid_metrics_list, test_metrics_list), f"{pre}/metrics.pt")