-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
443 lines (313 loc) · 12.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#!/usr/bin/env python
# coding: utf-8
import os
import pandas as pd
import pandas.tseries.offsets as offset
# #### OECD VERİSİ - PWT
datasets = ['imf', 'bl', 'pwt', 'wb', 'eora', 'woid', 'tivan']
COUNTRY_LIST = ['CRI', 'CZE', 'DEU', 'DNK', 'ESP', 'EST', 'FIN',
'FRA', 'GBR', 'GRC', 'HUN', 'IDN', 'IND', 'IRL', 'ISL',
'ISR', 'ITA', 'JPN', 'KOR', 'LTU', 'LUX', 'LVA', 'MEX', 'NLD', 'NOR',
'NZL', 'POL', 'PRT', 'ROU', 'RUS', 'SAU', 'SVK', 'SVN',
'SWE', 'TUR', 'USA', 'ZAF']
def oecd(frequency: str, measure: str, subject: str, date=None):
data_oecd = pd.read_csv('data/DP_LIVE_19082020122503891.csv')
data_oecd = data_oecd.rename(columns={'TIME': 'date'})
# Frequency: Q (quarterly), Measure: Index, Subject: volidx Olanlar Seçiliyor
data_oecd = data_oecd[(data_oecd['FREQUENCY'] == frequency.upper()) & (
data_oecd['MEASURE'] == measure) & (data_oecd['SUBJECT'] == subject)]
oecd = data_oecd.pivot(index='date', columns='LOCATION', values='Value')
oecd.columns.name = None
oecd.index = pd.to_datetime(oecd.index)
if date is not None:
oecd = oecd[oecd.index >= str(date)]
return oecd
def read_pwt(code: str, date: int = None):
"""
PWT veri setinden belirli verileri okuyun.
Args:
code: İstenen indicator'a ait kod.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
data = pd.read_excel(
'data/pwt91.xlsx', sheet_name='Data', usecols=['year', 'countrycode', code])
data = data.rename(columns={'year': 'date'})
data['date'] = pd.to_datetime(data.date.astype(str))
if date is not None:
data = data[data.date >= str(date)]
data = data.pivot(index='date', columns='countrycode').droplevel(axis=1, level=0)
data.columns.name = None
return data
def read_eora(code: str, date=None):
"""
Seçilen değişkene ait sektörlerin toplamını döndürür.
Args:
code: İstenen indicator'a ait kod.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
data = pd.read_csv('data/X/eora/eora.csv')
data = data.rename(columns={'year': 'date'})
data['date'] = pd.to_datetime(data.date.astype(str))
data = data[data.type == code]
if date is not None:
data = data[data.date >= str(date)]
data = data \
.set_index(['date', 'country']) \
.sum(axis=1) \
.reset_index() \
.pivot(index='date', columns='country', values=0)
return data
def read_woid(code: str, date=None):
"""
Seçilen değişkene ait sektörlerin toplamını döndürür.
Args:
code: İstenen indicator'a ait kod.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
data = pd.read_csv('data/X/woid/WOID_data.csv')
data = data.rename(columns={'year': 'date'})
data['date'] = pd.to_datetime(data.date.astype(str))
data = data[data.type == code]
if date is not None:
data = data[data.date >= str(date)]
data = data \
.set_index(['date', 'country']) \
.sum(axis=1) \
.reset_index() \
.pivot(index='date', columns='country', values=0)
return data
def read_tivan(code: str, date=None):
"""
Seçilen değişkene ait sektörlerin toplamını döndürür.
Args:
code: İstenen indicator'a ait kod.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
data = pd.read_csv('data/X/tivan/tivan.csv')
data = data.rename(columns={'year': 'date'})
data['date'] = pd.to_datetime(data.date.astype(str))
data = data[data.type == code]
if date is not None:
data = data[data.date >= str(date)]
data = data \
.set_index(['date', 'country']) \
.sum(axis=1) \
.reset_index() \
.pivot(index='date', columns='country', values=0)
return data
# #### source
def source(name: str = None) -> pd.DataFrame:
"""
Veri setlerine ait indicator ve kodları almak için kullanılır.
Parametre geçilmezse veri setlerini belirten mesaj döndürür.
Args:
name (str) : Default None. İstenen veri seti:
data.datesets ile belirtilmiştir.
"""
if name is None:
return "{} veri setlerinden birini kullanın".format(datasets)
if name == 'imf':
return __imf_source()
elif name == 'bl':
definition = pd.read_csv('data/X/lee&lee/indicator.csv')
elif name == 'pwt':
return __pwt_source()
elif name == 'wb':
definition = pd.read_csv('data/X/wb/indicator.csv')
elif name == 'eora':
definition = pd.read_csv('data/X/eora/indicator.csv')
elif name == 'woid':
definition = pd.read_csv('data/X/woid/indicator.csv')
elif name == 'oecd':
return __source_oecd()
elif name == 'tivan':
definition = pd.read_csv('data/X/tivan/indicator.csv')
else:
raise ValueError('No source with specified name.')
return definition
def __imf_source():
available = pd.read_csv('data/X/imf/annually.csv',
usecols=['indicator'], squeeze=True).unique()
imf_source = pd.read_excel('data/X/imf/indicator.xlsx', sheet_name='IFS',
skiprows=1, usecols=['Indicator Name', 'Indicator Code'])
imf_source = imf_source[imf_source['Indicator Code'].isin(
available)]
return imf_source
def __source_oecd():
data_oecd = pd.read_csv('data/DP_LIVE_19082020122503891.csv')
return dict(measure=data_oecd['MEASURE'].unique().tolist(), subject=data_oecd['SUBJECT'].unique().tolist())
def __pwt_source():
return pd.read_excel('data/pwt91.xlsx', sheet_name='indicator')
# #### IMF Data
def read_imf(code: str, frequency: str, date: int = None):
"""
IMF veri setinden belirli verileri okuyun.
Args:
code: İstenen indicator'a ait kod.
frequency (str) : quarterly veriler kontrol edilmek isteniyorsa 'q',
annually veriler için 'a' ayarlanmalı.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
base_path = 'data/X/imf/{}.csv'
frequency = frequency.lower()
if frequency == 'q':
frequency = 'quarterly'
elif frequency.lower() == 'a':
frequency = 'annually'
elif frequency.lower() == 'm':
frequency = 'monthly'
else:
raise ValueError('frequency must be a (annualy) or q (quarterly)')
path = base_path.format(frequency)
data = pd.read_csv(path)
if frequency == 'quarterly':
data['date'] = data['date'].str.split().apply(
lambda x: pd.Timestamp('-'.join([x[1], x[0]])))
else:
data['date'] = pd.to_datetime(data.date.astype(str))
if date is not None:
data = data[data.date >= str(date)]
data = data[data.indicator == code].drop(
'indicator', axis=1).set_index('date')
data = data[~data.index.duplicated()]
data= data.sort_index()
return data
def __concat_excel():
"""To concatenate data in the willconcat folder.
"""
base_path = 'data/X/willconcat'
will_concat = list(map(lambda x: os.path.join(
base_path, x), os.listdir(base_path)))
df_list = []
for path in will_concat:
df_list.append(pd.read_excel(path, header=1))
data = pd.concat(df_list)
data = data.rename(
columns={'Unnamed: 0': 'date', 'Unnamed: 1': 'indicator'})
return data
# #### WB Data
def read_wb(code: str, date=None):
"""
World Bank veri setinden belirli verileri okuyun.
Args:
code: İstenen indicator'a ait kod.
date: Default None. Veri hangi yıldan itibaren alınsın?
"""
base_path = 'data/X/wb/{}.csv'
path = base_path.format(code)
data = pd.read_csv(path)
data = data.drop(data.tail(5).index).dropna(how='all')
data.rename(columns={'Time Code': 'date',
'Series Code': 'indicator'}, inplace=True)
data['date'] = data['date'].apply(
lambda x: ''.join([ch for ch in x if ch.isdigit()]))
data['date'] = pd.to_datetime(data.date.astype(str))
if date is not None:
data = data[data.date >= str(date)]
data = data.drop('indicator', axis=1).set_index('date')
return data
# #### Lee & Lee
def __country_codes():
codes = pd.read_html(
'https://www.iban.com/country-codes')[0][['Country', 'Alpha-3 code']]
some_countries = ['united kingdom', 'philippines', 'republic of korea', 'taiwan',
'czech republic', 'russian federation', 'dominican rep.',
'venezuela', 'iran', 'syria', 'congo, d.r.', 'cote divoire',
'gambia', 'niger', 'reunion', 'sudan', 'swaziland', 'netherlands', 'bolivia']
some_codes = ['GBR', 'PHL', 'KOR', 'TWN', 'CZE', 'RUS', 'DOM', 'VEN', 'IRN',
'SYR', 'COD', 'CIV', 'GMB', 'NER', 'REU', 'SDN', 'SWZ', 'NLD', 'BOL']
add = pd.DataFrame(list(zip(some_countries, some_codes)),
columns=['Country', 'Alpha-3 code'])
codes = codes.append(add)
codes.Country = codes.Country.str.lower()
codes = codes.set_index('Country').unstack().droplevel(0)
return codes
def __lee_hc():
data = pd.read_excel('data/X/lee&lee/LeeLee_HC_MF1564 (1).xls', header=7)
data = data.dropna(subset=['Year', 'Population\n(1000s)'])
data.loc[:, 'Country'] = data['Country'].ffill().str.lower()
data['Country'] = data['Country'].replace(__country_codes())
data = data.rename(
columns={'Age Group': 'Age Group 1', 'Unnamed: 3': 'Age Group 2'})
data = data.astype({'Year': int, 'Age Group 1': int, 'Age Group 2': int})
data = data.rename(columns={'Year': 'date'})
return data
def __lee_enrol():
data = pd.read_excel('data/X/lee&lee/LeeLee_enroll_MF (1).xls', header=7)
data = data.dropna(subset=['Year'])
data.loc[:, 'Country'] = data['Country'].ffill().str.lower()
data['Country'] = data['Country'].replace(__country_codes())
data = data.astype({'Year': int})
data = data.rename(columns={'Year': 'date'})
return data
def __lee_attain():
data = pd.read_excel('data/X/lee&lee/LeeLee_attain_MF1564.xls',
header=7).rename(columns={'Unnamed: 3': 'Age Group 2'})
data = data.dropna(how='all')
data.loc[:, 'Country'] = data['Country'].ffill().str.lower()
data['Country'] = data['Country'].replace(__country_codes())
data = data.astype({'Year': int})
data = data.rename(columns={'Year': 'date'})
return data
def read_bl(code: str, date: int = None):
"""
Barro-Lee Verisini okuyun.
Args:
code: (str) : İstenen indicator'a karşılık gelen kod.
date: (int) : Veri hangi yıldan itibaren okunsun?
"""
file = code.partition('_')[0]
code = code.partition('_')[-1]
if file == 'hc':
data = __lee_hc()
elif file == 'enrol':
data = __lee_enrol()
elif file == 'attain':
data = __lee_attain()
else:
raise ValueError(
"Invalid code parameter. Please pass one of the parameters 'hc', 'enrol', 'attain'.")
if date is not None:
data = data[data['date'] >= date]
data['Country'] = data['Country'].str.upper()
data['date'] = pd.to_datetime(data.date.astype(str))
data = data.pivot(index='date', columns='Country', values=code)
return data
def __date_control_quarter(x):
dates = x.dropna().index.to_series()
start = dates.diff() < offset.Day(95)
end = dates.shift(-1) - dates < offset.Day(95)
start = dates[~start].values
end = dates[~end].values
start = pd.PeriodIndex(start, freq='Q')
end = pd.PeriodIndex(end, freq='Q')
return list(zip(start, end))
def __date_control(x):
dates = x.dropna().index.to_series()
start = dates.diff() != 1
end = dates.shift(-1) - dates != 1
start = dates[start].values
end = dates[end].values
return list(zip(start, end))
def control(data, freq: str = 'a', name=None):
"""
Verileri kontrol etmek için kullanılır.
Args:
data (Dataframe or Serie) : Kontrol edilmek istenen veri.
freq (str) : Default 'a'. Eğer quarterly veriler kontrol edilmek isteniyorsa 'q' ayarlanmalı.
name (str) : Kontrol sonucunu adlandırmak için kullanılır.
"""
df = data.copy()
if freq == 'q':
df_year = df.apply(__date_control_quarter)
else:
df.index = df.index.to_series().dt.year
df_year = df.apply(__date_control)
if isinstance(df_year, pd.DataFrame):
df_year = df_year.loc[0]
df_result = pd.concat([df_year, df.count()], axis=1)
df_result.columns = ['start-end', 'total']
if name is not None:
df_result['name'] = name
df_result.to_csv('data/app/control.csv')
return df_result