-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsphericalProduct_sampling.m
169 lines (135 loc) · 6.36 KB
/
sphericalProduct_sampling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
function [point] = sphericalProduct_sampling(para, arclength)
% Sampling of Superquadrics by spherical products (almost-uniform)
% 2D superellipse sampling referenced from
% Based on Pilu and Fisher, Equal-Distance Sampling of Superellipse Models, 1995
% Written and modified by Weixiao Liu, PhD student @ JHU, NUS
% June 2th, 2021, Singapore
% -------------------------------------------------------------------------
% DESCRIPTION:
% INPUT:
% OUTPUT:
% -------------------------------------------------------------------------
% avoiding numerical instability when sampling points
epsilon = max(para(1 : 2), [0.007, 0.007]);
a = para(3 : 5);
R = eul2rotm(para(6 : 8));
t = para(9 : 11);
[~, theta1, critical1] = uniformSampledSuperellipse(epsilon(1), [(a(1) + a(2)) / 2, a(3)], [0 0 0], arclength, 0);
a_mod = zeros(1, size(theta1, 2));
a_mod(1 : critical1 - 1) = cos(theta1(1 : critical1 - 1)) .^ epsilon(1);
a_mod(critical1 : end) = flip(sin(theta1(critical1 : end))) .^ epsilon(1);
points_fw1 = angle2points(theta1(1 : critical1 - 1), [1, a(3)], epsilon(1));
points_bw1 = flip(angle2points(theta1(critical1 : end), [a(3), 1], epsilon(1)), 2);
point1 = [points_fw1, [points_bw1(2, :); points_bw1(1, :)]];
point2 = cell(1, size(a_mod, 2));
for i = 1 : size(a_mod, 2)
[~, theta2, critical2] = uniformSampledSuperellipse(epsilon(2), [a(1), a(2)], [0 0 0], arclength / a_mod(i), 0);
points_fw2 = angle2points(theta2(1 : critical2 - 1), [a(1), a(2)], epsilon(2));
points_bw2 = flip(angle2points(theta2(critical2 : end), [a(2), a(1)], epsilon(2)), 2);
point2{i} = [points_fw2, [points_bw2(2, :); points_bw2(1, :)]];
end
% save in cell to differentiate points with their latitude
point_upper = cell(size(point1, 2), 1);
for i = 1 : size(point1, 2)
point_temp = [point2{i} * point1(1, i); ones(1, size(point2{i}, 2)) * point1(2, i)];
num_pt = size(point_temp, 2);
point_upper{i} = [point_temp, ...
[-point_temp(1, 1 : num_pt - 1); point_temp(2, 1 : num_pt - 1); point_temp(3, 1 : num_pt - 1)], ...
[-point_temp(1, 2 : end); -point_temp(2, 2 : end); point_temp(3, 2 : end)], ...
[point_temp(1, 2 : num_pt - 1); -point_temp(2, 2 : num_pt - 1); point_temp(3, 2 : num_pt - 1)]];
end
point_upper{size(point1, 2)} = point_upper{size(point1, 2)}(:, 1);
num_pt = 0;
for i = 2 : size(point1, 2)
point(:, num_pt + 1 : num_pt + size(point_upper{i}, 2)) = ...
point_upper{i};
num_pt = num_pt + size(point_upper{i}, 2);
end
point = [point_upper{1}, point, [point(1, :); point(2, :); -point(3, :)]]';
point = R * point' + t';
% -------------------------functions --------------------------------------
%------------------ mapping from angles to points -------------------------
function [point] = angle2points(theta, scale, sigma)
point = zeros(2, size(theta, 2));
point(1, :) = scale(1) .* sign(cos(theta)) .* abs(cos(theta)).^sigma;
point(2, :) = scale(2) .* sign(sin(theta)) .* abs(sin(theta)).^sigma;
end
%------------------ sampling on superellipse uniformly --------------------
function [point, theta, critical] = uniformSampledSuperellipse(sigma, scale, xform, arclength ,disp)
threshold = 1e-2;
num_limit = 10000;
theta = zeros(1, num_limit);
seg = zeros(1, num_limit);
theta(1) = 0;
seg(1) = 1;
for m = 2 : num_limit
[dt, seg_temp] = dtheta(theta(m - 1), arclength, threshold, scale, sigma);
theta_temp = theta(m - 1) + dt;
if theta_temp > pi/4
theta(m) = pi/4;
break
else
if m < num_limit
theta(m) = theta_temp;
seg(m) = seg_temp;
else
error(['The number of the sampled points exceeds the limit of ', ...
num2str(num_limit * 4),...
'. Please increase the arclength or raise the limit'])
end
end
end
critical = m + 1;
seg(critical) = 1;
for n = critical + 1 : num_limit
[dt, seg_temp] = dtheta(theta(n - 1), arclength, threshold, flip(scale), sigma);
theta_temp = theta(n - 1) + dt;
if theta_temp > pi/4
break
else
if n < num_limit
theta(n) = theta_temp;
seg(n) = seg_temp;
else
error(['The number of the sampled points exceeds the limit of ', ...
num2str(num_limit * 4),...
'. Please increase the arclength or raise the limit'])
end
end
end
num_point = n - 1;
theta = theta(1 : num_point);
seg = seg(1 : num_point);
seg = [seg(1 : critical - 1), flip(seg(critical : end))];
points_fw = angle2points(theta(1 : critical - 1), scale, sigma);
points_bw = flip(angle2points(theta(critical : end), flip(scale), sigma), 2);
point = [points_fw, [points_bw(2, :); points_bw(1, :)]];
point = [point, [-point(1, 1 : num_point - 1); point(2, 1 : num_point - 1)], ...
[-point(1, 2 : end); -point(2, 2 : end)], [point(1, 2 : num_point - 1); ...
-point(2, 2 : num_point - 1)]];
seg = [seg, seg(1 : num_point - 1), seg(2 : end), seg(2 : num_point - 1)];
point = [cos(xform(1)), -sin(xform(1)); sin(xform(1)), cos(xform(1))]...
* point + [xform(2); xform(3)];
if disp == 1
figure
plot(point(1, seg == 1), point(2, seg == 1), '*')
hold on
plot(point(1, seg == 2), point(2, seg == 2), '*')
hold off
axis equal
end
end
%------------------ calculation of theta interval----- --------------------
function [dt, seg] = dtheta(theta, arclength, threshold, scale, sigma)
if theta < threshold
dt = abs((arclength / scale(2) + (theta)^(sigma))^(1 / sigma) ...
- (theta));
seg = 1;
else
dt = arclength / sigma * ((cos(theta) ^ 2 * sin(theta) ^ 2) / ...
(scale(1) ^ 2 * cos(theta) ^ (2 * sigma) * sin(theta) ^ 4 + ...
scale(2) ^ 2 * sin(theta) ^ (2 * sigma) * cos(theta) ^ 4))^(1 / 2);
seg = 2;
end
end
end