-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
304 lines (256 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
'''
@file: main.py
The main file containing the skeletal code for training the models.
@author: Rukmangadh Sai Myana
@mail: rukman.sai@gmail.com
'''
import os
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from model import MemoryAugmentedCNN
from util import (
set_defaults,
save_best_model,
)
from sampler import MyMnistSampler
_CHKPNT_IDX = 0 # points to the checkpoint to be created/overwritten
_CUMM_BATCH_IDX = -1 # cummulative batch index for loss graph
def train(args,
model,
train_loader,
optimizer,
loss_layer,
writer,
epoch):
'''
Train the model for the classification task on mnist or mnist like data.
@param args: The arguments provided as flags.
@param model: The pytorch model we are using.
@param train_loader: The data loader for training.
@param optimizer: The optimizer used for training.
@param loss_layer: The loss layer for loss calculation.
@param epoch: The value of the current epoch.
@returns metrics: The metrics of the model for the current epoch
'''
model.train() # put the model in training mode.
# iterate over the train dataset
num_samples = 0
num_correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
global _CUMM_BATCH_IDX
_CUMM_BATCH_IDX += 1
# encode the labels in the form [0, N-1]
labels_tensor = torch.tensor(args.labels)
labels_tensor = labels_tensor.unsqueeze(dim=0)
encoder_tensor = labels_tensor.repeat(list(target.size())[0], 1)
target = ((encoder_tensor == target.unsqueeze(dim=1)).nonzero())[:, 1]
# move to the computation device
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad() # clear the gradients
# forward propagation
output = model(data)
loss = loss_layer(output, target)
# backward propagation - gradient calculation
loss.backward()
# update the parameters
optimizer.step()
# logging
writer.add_scalar('loss/train', loss.item(), _CUMM_BATCH_IDX)
num_samples += list(target.size())[0]
num_correct += int(torch.sum(torch.argmax(output, dim=1) == target
).item())
if batch_idx % args.checkpoint_interval == 0:
# save checkpoint
global _CHKPNT_IDX
filepath = os.path.join(args.summary_dir,
'checkpoint_{}.tar'.format(_CHKPNT_IDX))
_CHKPNT_IDX = (_CHKPNT_IDX + 1) % args.num_checkpoints # update
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'checkpoint_idx': _CHKPNT_IDX,
}, filepath)
# save checkpoint as latest_checkpoint also
filepath = os.path.join(args.summary_dir, 'latest_checkpoint.tar')
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'checkpoint_idx': _CHKPNT_IDX,
}, filepath)
metrics = {'accuracy': num_correct/num_samples*100}
writer.add_scalar('accuracy/train', metrics['accuracy'],
epoch)
tqdm.write('Train accuracy after epoch-{} is {:.2f}% \n'.format(
epoch, metrics['accuracy']))
return metrics
def test(args,
model,
test_loader,
loss_layer,
writer,
epoch):
'''
Test the model for the classification task on mnist or mnist like data.
@param args: The argumennts provided as flags.
@param model: The pytorch model we are using.
@param test_loader: The data loader for testing.
@param loss_layer: The loss layer for loss calculation.
@param epoch: The value of the current epoch.
@returns The metrics of the model for the current epoch.
'''
model.eval() # put the model in evaluation mode.
# iterate over the test dataset
num_samples = 0
num_correct = 0
for data, target in test_loader:
# encode the labels in the form [0, N-1]
labels_tensor = torch.tensor(args.labels)
labels_tensor = labels_tensor.unsqueeze(dim=0)
encoder_tensor = labels_tensor.repeat(list(target.size())[0], 1)
target = ((encoder_tensor == target.unsqueeze(dim=1)).nonzero())[:, 1]
# move to the computation device
data, target = data.to(args.device), target.to(args.device)
output = model(data)
num_samples += list(target.size())[0]
num_correct += int(torch.sum(torch.argmax(output, dim=1) == target
).item())
metrics = {'accuracy': num_correct/num_samples*100}
writer.add_scalar('accuracy/test', metrics['accuracy'],
epoch)
tqdm.write('Test accuracy after epoch-{} is {:.2f}% \n'.format(
epoch, metrics['accuracy']))
# save model if best
save_best_model(args.summary_dir, model, metrics, 'accuracy')
return metrics
def load_dataset(args):
'''
Load the dataset specified by the argument.
@param args: The arguments provided though the script flags.
@returns: The data loaders.
'''
# create train dataset
train_dataset = datasets.MNIST(
args.data_folder, train=True, download=args.download_data,
transform=transforms.Compose([
transforms.RandomResizedCrop(28),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(
(0.1307,), (0.3081,))
])
)
# create test dataset
test_dataset = datasets.MNIST(
args.data_folder, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.1307,), (0.3081,))
])
)
# create the sampler for training
train_sampler = MyMnistSampler(args.labels, train_dataset)
# create train dataloader
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=False,
sampler=train_sampler,
num_workers=args.workers,
pin_memory=args.pin_memory,
)
test_sampler = MyMnistSampler(args.labels, test_dataset)
# create test dataloader
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.train_batch_size,
shuffle=False,
sampler=test_sampler,
num_workers=args.workers,
pin_memory=args.pin_memory,
)
return {'train': train_loader, 'test': test_loader}
def main(args):
'''
The main function that gets executed when the script is run.
'''
writer = SummaryWriter(log_dir=args.summary_dir)
model = MemoryAugmentedCNN(args).to(
args.device)
data_loaders = load_dataset(args)
# set optimizer
if args.optimizer == 'adam':
optimizer_kwargs = {'lr': args.lr,
'betas': args.betas,
'eps': args.eps,
'weight_decay': args.weight_decay,
'amsgrad': args.amsgrad}
default_kwargs = {'lr': 0.001,
'betas': (0.9, 0.999),
'eps': 1e-8,
'weight_decay': 0,
'amsgrad': False}
# set defaults to values not provided
optimizer_kwargs = set_defaults(optimizer_kwargs,
default_kwargs)
optimizer = torch.optim.Adam(model.parameters(),
**optimizer_kwargs)
else:
raise NotImplementedError('Given optimizer is not yet\
supported.')
# set lr scheduler
if args.lr_scheduler == 'steplr':
if args.step_size is None:
raise Exception('--step_size is required.')
scheduler_kwargs = {'step_size': args.step_size,
'gamma': args.gamma,
'last_epoch': args.last_epoch}
default_kwargs = {'gamma': 0.1, 'last_epoch': -1}
# set defaults to the values not provided.
scheduler_kwargs = set_defaults(scheduler_kwargs,
default_kwargs)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
**scheduler_kwargs)
else:
raise NotImplementedError('Given learning rate scheduler is\
not yet supported.')
# set loss layer - classfication task
loss_layer = nn.CrossEntropyLoss()
# resume training
global _CHKPNT_IDX
if args.resume:
path = os.path.join(args.summary_dir, 'latest_checkpoint.tar')
latest_checkpoint = torch.load(path, args.device)
model.load_state_dict(
latest_checkpoint['model_state_dict'])
optimizer.load_state_dict(
latest_checkpoint['optimizer_state_dict'])
_CHKPNT_IDX = latest_checkpoint['checkpoint_idx']
# load checkpoint
elif args.load_checkpoint is not None:
checkpoint = torch.load(args.load_checkpoint, args.device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
_CHKPNT_IDX = checkpoint['checkpoint_idx']
# model learning
for epoch in tqdm(range(1, args.num_epochs+1),
desc='Epoch Number'):
train_metrics = train(args,
model,
data_loaders['train'],
optimizer,
loss_layer,
writer,
epoch)
test_metrics = test(args,
model,
data_loaders['test'],
loss_layer,
writer,
epoch)
scheduler.step()
# close the writer
writer.close()