-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstepperdrivertest2.v
426 lines (367 loc) · 7.7 KB
/
stepperdrivertest2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// stepperdrivertest2.v
module stepperdrivertest2(clock, reset, dirX, dirY, pulseX, pulseY, dirXtest, pulseEnX, pulseClkX,motionstateX);
input clock, reset;
//input tableedgeX, tableedgeY;
input [1:0] dirX, dirY;
output wire [1:0] dirXtest;
assign dirXtest = dirX;
parameter STOP = 2'b00;
parameter ACCEL = 2'b01;
parameter RUN = 2'b10;
parameter DECEL = 2'b11;
//these sizes are pretty arbitrary
//reg [64:0] position;
//reg [31:0] speed;
//reg [15:0] acceleration;
output reg[3:0] pulseX;
output reg [3:0] pulseY;
output reg pulseEnX;
reg pulseEnY;
output reg pulseClkX;
reg pulseClkY;
//BEST PERFORMANCE
//ACCEL = 13'b1111111111110
//MAXSPEEDX = 16'b1000010110000000
//MINSPEEDX = 18'b100001011000111111
`define CW 2'b01
`define CCW 2'b10
`define NONE 2'b00
`define ACCELX 13'b1111111111110 //in mm/s (8388607)
`define ACCELY 20'b11111111111111111111
`define MAXSPEEDX 17'b10000101100000000 //minimum number of clock ticks (17094) between steps for max speed (300 mm/s)
`define MINSPEEDX 19'b1100001110100000001 //maximum number of clock ticks (25641025) between steps fo starting speed (1 mm/s)
`define MAXSPEEDY 18'b100001011000111111
`define MINSPEEDY 19'b1100001110100000001
reg [25:0] speedX = `MINSPEEDX, speedY = `MINSPEEDY;
//the output of these states is defined below
parameter OFF = 3'b000; //no motor pulse
parameter STEP1 = 3'b001; //wire 0 and wire 3
parameter STEP2 = 3'b010; //wire 0 and wire 2
parameter STEP3 = 3'b011; //wire 1 and wire 2
parameter STEP4 = 3'b100; //wire 1 and wire 3
reg [28:0] countX, countY;
//count on both clock edges to generate clock within step delay (without redoing calculations
always @(posedge clock)
begin
if(countX >= speedX) begin
pulseClkX <= ~pulseClkX;
countX <= 0;
end
else begin
countX <= countX + 2;
end
end
always @(posedge clock)
begin
if(countY >= speedY) begin
pulseClkY <= ~pulseClkY;
countY <= 0;
end
else begin
countY <= countY + 2;
end
end
//next state logic for motors driving sequence
//this FSM produces the signals sent to the wires of the steppers
reg [2:0] stateX;
reg [2:0] stateY;
reg [2:0] nextstateX, nextstateY;
always@ *
begin
case (stateX)
OFF: begin
nextstateX = STEP1;
end
STEP1: begin
if(dirX == `CW) begin
nextstateX = STEP2;
end
else begin
nextstateX = STEP4;
end
end
STEP2: begin
if(dirX == `CW) begin
nextstateX = STEP3;
end
else begin
nextstateX = STEP1;
end
end
STEP3: begin
if(dirX == `CW) begin
nextstateX = STEP4;
end
else begin
nextstateX = STEP2;
end
end
STEP4: begin
if(dirX == `CW) begin
nextstateX = STEP1;
end
else begin
nextstateX = STEP3;
end
end
default: nextstateX = OFF;
endcase
case (stateY)
OFF: begin
nextstateY = STEP1;
end
STEP1: begin
if(dirY == `CW) begin
nextstateY = STEP2;
end
else begin
nextstateY = STEP4;
end
end
STEP2: begin
if(dirY == `CW) begin
nextstateY = STEP3;
end
else begin
nextstateY = STEP1;
end
end
STEP3: begin
if(dirY == `CW) begin
nextstateY = STEP4;
end
else begin
nextstateY = STEP2;
end
end
STEP4: begin
if(dirY == `CW) begin
nextstateY = STEP1;
end
else begin
nextstateY = STEP3;
end
end
default: nextstateY = OFF;
endcase
end
//The motors are clocked based on step delay, a counter (called pulseClk) we are continuously updating
//the pulseClk signal updates after a certain amount of cycles which is calculated in the motion control FSM
always@ (posedge pulseClkX)
begin
if(~pulseEnX) begin //pulseEnX is updated in motion control FSM, specifically the STOP state
stateX <= OFF;
end
else begin
stateX <= nextstateX;
end
end
always@ (posedge pulseClkY)
begin
if(~pulseEnY) begin //pulseEnY is updated in motion control FSM, specifically the STOP state
stateY <= OFF;
end
else begin
stateY <= nextstateY;
end
end
//output logic for motor driver FSM
always@ *
begin
case(stateX)
OFF: begin
pulseX = 4'b000;
end
STEP1: begin
pulseX = 4'b1001;
end
STEP2: begin
pulseX = 4'b0101;
end
STEP3: begin
pulseX = 4'b0110;
end
STEP4: begin
pulseX = 4'b1010;
end
//default: pulseX = 0;
endcase
case(stateY)
OFF: begin
pulseY = 4'b000;
end
STEP1: begin
pulseY = 4'b1001;
end
STEP2: begin
pulseY = 4'b0101;
end
STEP3: begin
pulseY = 4'b0110;
end
STEP4: begin
pulseY = 4'b1010;
end
//default: pulseY = 0;
endcase
end
output reg [1:0] motionstateX = STOP;
reg [1:0] motionstateY = STOP;
reg [1:0] nextmotionstateX, nextmotionstateY;
reg [1:0] prevdirX, prevdirY;
//motion control FSM. each state determines how the speed is being controlled
//next state logic for motion controller FSM
always @*
begin
case(motionstateX)
STOP: if(dirX == `CW || dirX == `CCW) begin
nextmotionstateX = ACCEL;
end
else begin
nextmotionstateX = STOP;
end
ACCEL: if(speedX <= `ACCELX * 3 ) begin
nextmotionstateX = RUN;
end
else if(prevdirX != dirX) begin
nextmotionstateX = DECEL;
end
//else if(tableedgeX) begin
// nextmotionstateX = STOP;
// end
else begin
nextmotionstateX = ACCEL;
end
RUN: if(prevdirX != dirX) begin
nextmotionstateX = DECEL;
end
//else if(tableedgeX) begin
// nextmotionstateX = STOP;
//end
else begin
nextmotionstateX = RUN;
end
DECEL: if((speedX >= `MINSPEEDX)/* || tableedgeX*/) begin
nextmotionstateX = STOP;
end
else begin
nextmotionstateX = DECEL;
end
default: nextmotionstateX = STOP;
endcase
case(motionstateY)
STOP: if(dirY == `CW || dirY == `CCW) begin
nextmotionstateY = ACCEL;
end
else begin
nextmotionstateY = STOP;
end
ACCEL: if(speedY <= `ACCELY + 1) begin
nextmotionstateY = RUN;
end
else if(prevdirY != dirY) begin
nextmotionstateY = DECEL;
end
//else if(tableedgeY) begin
// nextmotionstateY = STOP;
//end
else begin
nextmotionstateY = ACCEL;
end
RUN: if(prevdirY != dirY) begin
nextmotionstateY = DECEL;
end
//else if(tableedgeY) begin
// nextmotionstateY = STOP;
//end
else begin
nextmotionstateY = RUN;
end
DECEL: if((speedY >= `MINSPEEDY)/* || tableedgeY*/) begin
nextmotionstateY = STOP;
end
else begin
nextmotionstateY = DECEL;
end
default: nextmotionstateY = STOP;
endcase
end
//state memory for motion controller FSM
always @(posedge pulseClkX)
begin
if(~reset) begin
motionstateX <= STOP;
end
else begin
motionstateX <= nextmotionstateX;
end
case(motionstateX)
STOP: speedX <= `MINSPEEDX;
ACCEL: speedX <= speedX - `ACCELX;
DECEL: speedX <= speedX + `ACCELX;
RUN: speedX <= `MAXSPEEDX;
endcase
prevdirX <= dirX;
end
always @(posedge pulseClkY)
begin
if(~reset) begin
motionstateY <= STOP;
end
else begin
motionstateY <= nextmotionstateY;
end
case(motionstateY)
STOP: speedY <= `MINSPEEDY;
ACCEL: speedY <= speedY - `ACCELY;
DECEL: speedY <= speedY + `ACCELY;
RUN: speedY <= `MAXSPEEDY;
endcase
prevdirY <= dirY;
end
//output logic for motion control FSM
always @ (posedge clock)
begin
case(motionstateX)
STOP: begin
pulseEnX <= 0;
end
ACCEL: begin
pulseEnX <= 1;
end
RUN: begin
pulseEnX <= 1;
end
DECEL: begin
pulseEnX <= 1;
end
//default: pulseEnX = 0;
endcase
case(motionstateY)
STOP: begin
pulseEnY <= 0;
end
ACCEL: begin
pulseEnY <= 1;
end
RUN: begin
pulseEnY <= 1;
end
DECEL: begin
pulseEnY <= 1;
end
//default: pulseEnY = 0;
endcase
end
//The next two always@ blocks are the state machine for speed position, it is still not functional, just psuedo-code
/*always @(posedge clock)
begin
speed <= next_speed;
position <= next_position;
end
always @*
begin
next_speed = speed + acceleration;
next_position = position + speed;
end*/
endmodule