-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_02-04_spatial.qmd
executable file
·267 lines (236 loc) · 6.69 KB
/
_02-04_spatial.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
## Visual Perception/Construction {#sec-spatial}
{{< include _02-04_spatial_text.qmd >}}
```{r}
#| label: setup-spatial
#| include: false
# domain
domains <- c("Visual Perception/Construction")
# phenotype
pheno <- "spatial"
```
```{r}
#| label: export-spatial
#| include: false
# Read the CSV file into a data frame
spatial <- vroom::vroom("neurocog.csv")
# Filter the data frame to keep only rows where 'domain' equals 'domains'
spatial <- spatial |> dplyr::filter(domain %in% domains)
spatial <- spatial |>
dplyr::select(
test,
test_name,
scale,
raw_score,
score,
ci_95,
percentile,
range,
domain,
subdomain,
narrow,
pass,
verbal,
timed,
description,
result,
z,
z_mean_domain,
z_sd_domain,
z_mean_subdomain,
z_sd_subdomain,
z_mean_narrow,
z_sd_narrow,
z_mean_pass,
z_sd_pass,
z_mean_verbal,
z_sd_verbal,
z_mean_timed,
z_sd_timed
)
# Write the resulting data frame to a new CSV file
# The file name is created by concatenating the 'pheno' variable and ".csv"
# NA values are replaced with an empty string in the output file
# Column names are included in the output file
# If the file already exists, it is overwritten (not appended)
readr::write_excel_csv(spatial, paste0(pheno, ".csv"), na = "", col_names = TRUE, append = FALSE)
```
```{r}
#| label: data-spatial
#| include: false
scales <- c(
"Arrows",
"Bicycle Drawing",
"Block Design No Time Bonus",
"Block Design Partial Score",
"Block Design",
"Clock Drawing",
"Clocks",
"Design Construction",
"Design Copying General",
"Design Copying Motor",
"Design Copying Process",
"Design Copying",
"Figure Copy",
"Figure Drawing Copy",
"Figure Weights",
"Figure Weights (Double-Time)",
"Geometric Puzzles",
"Line Orientation",
"Map Reading",
"Matrix Reasoning",
"NAB Spatial Index",
"Object Assembly",
"Picture Concepts",
"ROCF Copy",
"ROCFT Copy",
"Spatial Domain",
"Visual Discrimination",
"Visual Puzzles",
"Visuospatial/Constructional Index",
"Spatial Index (SPT)",
"Visual Discrimination",
"Design Construction",
"Figure Drawing Copy",
"Figure Drawing Copy Organization",
"Figure Drawing Copy Fragmentation",
"Figure Drawing Copy Planning",
"Figure Drawing Immediate Recall",
"Figure Drawing Immediate Recall Organization",
"Figure Drawing Immediate Recall Fragmentation",
"Figure Drawing Immediate Recall Planning",
"Figure Drawing Percent Retention",
"Map Reading"
)
# Filter the data using the filter_data function from the bwu library
# The domain is specified by the 'domains' variable
# The scale is specified by the 'scales' variable
data_spatial <-
bwu::filter_data(
data = spatial,
domain = domains,
scale = scales
)
```
```{r}
#| label: text-spatial
#| cache: true
#| include: false
# export text
bwu::cat_neuropsych_results(data = data_spatial, file = "_02-04_spatial_text.qmd")
```
```{r}
#| label: qtbl-spatial
#| dev: tikz
#| fig-process: pdf2png
#| include: false
# Set the default engine for tikz to "xetex"
options(tikzDefaultEngine = "xetex")
# args
table_name <- "table_spatial"
vertical_padding <- 0
multiline <- TRUE
# footnotes
fn_standard_score <- gt::md("Standard score: Mean = 100 [50th‰], SD ± 15 [16th‰, 84th‰]")
fn_scaled_score <- gt::md("Scaled score: Mean = 10 [50th‰], SD ± 3 [16th‰, 84th‰]")
fn_t_score <- gt::md("T-score: Mean = 50 [50th‰], SD ± 10 [16th‰, 84th‰]")
fn_z_score <- gt::md("Score = z-score (Mean = 0 [50th‰], SD ± 1 [16th‰, 84th‰])")
source_note <- gt::md("_T_ score: Mean = 50 [50th‰], SD ± 10 [16th‰, 84th‰]")
# grouping
grp_spatial <- list(
scaled_score = c("WAIS-IV", "WISC-5", "NEPSY-2", "WPPSI-IV", "WISC-V"),
standard_score = c("NAB", "WPPSI-IV", "NAB-S"),
t_score = c("NAB", "Rey Complex Figure", "WASI-2", "NAB-S", "NAB Spatial")
)
# make `gt` table
bwu::tbl_gt(
data = data_spatial,
pheno = pheno,
table_name = table_name,
source_note = source_note,
# fn_scaled_score = fn_scaled_score,
# fn_standard_score = fn_standard_score,
# fn_t_score = fn_t_score,
# grp_scaled_score = grp_spatial[["scaled_score"]],
# grp_standard_score = grp_spatial[["standard_score"]],
# grp_t_score = grp_spatial[["t_score"]],
dynamic_grp = grp_spatial,
vertical_padding = vertical_padding,
multiline = multiline
)
# make `gt` table
bwu::tbl_gt(
data = data_spatial,
pheno = pheno,
table_name = table_name,
source_note = source_note,
# fn_scaled_score = fn_scaled_score,
# fn_standard_score = fn_standard_score,
# fn_t_score = fn_t_score,
# grp_scaled_score = grp_spatial[["scaled_score"]],
# grp_standard_score = grp_spatial[["standard_score"]],
# grp_t_score = grp_spatial[["t_score"]],
dynamic_grp = grp_spatial,
vertical_padding = vertical_padding,
multiline = multiline
)
```
```{r}
#| label: fig-spatial
#| include: false
#| fig-cap: "Perception, construction, and visuospatial processing refer to abilities such as mentally visualizing how objects should look from different angles, visualizing how to put objects together so that they fit correctly, and being able to accurately and efficiently copy and/or reproduce visual-spatial information onto paper."
# filename for plot
filename <- "fig_spatial.svg"
# x and y axis variables
x <- data_spatial$z_mean_subdomain
y <- data_spatial$subdomain
# x <- data_spatial$z_mean_narrow
# y <- data_spatial$narrow
# plot args
colors <- NULL
return_plot <- TRUE
# Make dotplot
bwu::dotplot(
data = data_spatial,
x = x,
y = y,
colors = colors,
return_plot = return_plot,
filename = filename,
na.rm = TRUE
)
```
```{=typst}
#let domain(title: none, file_qtbl, file_fig) = {
let font = (font: "Roboto Slab", size: 0.7em)
set text(..font)
pad(top: 0.5em)[]
grid(
columns: (50%, 50%),
gutter: 8pt,
figure([#image(file_qtbl)],
caption: figure.caption(position: top, [#title]),
kind: "qtbl",
supplement: [*Table*],
),
figure([#image(file_fig)],
caption: figure.caption(position: bottom, [
Perception, construction, and visuospatial processing refer to abilities such as mentally visualizing how objects should look from different angles, visualizing how to put objects together so that they fit correctly, and being able to accurately and efficiently copy and/or reproduce visual-spatial information onto paper.
]),
placement: none,
kind: "image",
supplement: [*Figure*],
gap: 0.5em,
),
)
}
```
```{=typst}
#let title = "Visual Perception/Construction"
#let file_qtbl = "table_spatial.png"
#let file_fig = "fig_spatial.svg"
#domain(
title: [#title Scores],
file_qtbl,
file_fig
)
```