-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
277 lines (222 loc) · 11 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import copy
import math
import random
from typing import Dict
import datasets
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.data import Dataset, random_split, IterableDataset
from flwr_datasets.partitioner import DirichletPartitioner, Partitioner, IidPartitioner
from torch.utils.data import DataLoader
from flwr_datasets import FederatedDataset
import generate_datasets
import settings
from utils import calculate_label_skew, calculate_feature_skew
# We once started with images... Even though we don't use images, the variables act like they are.
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, item):
img = self.data[item]['img']
label = self.data[item]['label']
img_ = [int(x) for x in img.replace("[", "").replace("]", "").split(", ")]
while len(img_) <= 10:
img_.append(0)
img = torch.tensor(img_, dtype=torch.float)
label = int(label)
return {'img': img, 'label': label}
class CombinedDataLoader:
def __init__(self, loaders: Dict[int, DataLoader], weights, client):
self.loaders = loaders
self.lengths = [len(x) for x in loaders.values()]
self.client = client
self.weights = weights
self.states = {i: self.lengths[i] for i in self.loaders.keys()}
self.iterators = {i: iter(self.loaders[i]) for i in self.loaders.keys()}
def __iter__(self):
self.states = {i: self.lengths[i] for i in self.loaders.keys()}
self.iterators = {i: iter(self.loaders[i]) for i in self.loaders.keys()}
self.processed_loaders = {i: DataLoader(
AttackDataset(
(self.client.gather_results(list(enumerate(copy.deepcopy(self.loaders[i]))), i, self.weights)),
len=len(self.loaders[i])), batch_size=1) for i in self.loaders.keys()}
return self
def __next__(self):
batch = []
while len(batch) < settings.ATTACK_MODEL_BATCH_SIZE:
available_indices = [i for i in self.states.keys() if self.states[i] > 0]
if not available_indices:
raise StopIteration
idx = random.choice(available_indices)
self.states[idx] -= 1
try:
x = next(iter(self.processed_loaders[idx]))
batch.append(x)
except StopIteration:
self.states[idx] = 0
batch.append(self.__next__())
result = {}
for key in batch[0].keys():
to_stack = []
tmp = {}
for i in range(settings.ATTACK_MODEL_BATCH_SIZE):
if key not in ["layers", "gradients"]:
to_stack.append(batch[i][key])
else:
for j in batch[i][key].keys():
if j not in tmp.keys():
tmp[j] = []
tmp[j].append(batch[i][key][j][0])
if key not in ["layers", "gradients"]:
result[key] = torch.stack(to_stack)
else:
result[key] = {}
for j in tmp.keys():
result[key][j] = torch.stack(tmp[j])
return result
def __len__(self):
return math.floor(sum(self.lengths) / settings.ATTACK_MODEL_BATCH_SIZE)
class GeneratedDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, item):
return {'img': torch.tensor(self.data[item], dtype=torch.float),
'label': torch.tensor(self.labels[item], dtype=torch.long)}
class PartionedPartitioner(Partitioner):
def load_partition(self, partition_id: int) -> datasets.Dataset:
partition_id = partition_id + 1
ds = self.dataset.sort('partition')
length = len([x for x in ds['partition'] if x == partition_id])
offset = 0
while partition_id > 1:
partition_id -= 1
offset += len([x for x in ds['partition'] if x == partition_id])
return ds.select(indices=range(offset, offset + length))
@property
def num_partitions(self) -> int:
return self._num_partitions
def __init__(self, num_partitions: int) -> None:
super().__init__()
if num_partitions <= 0:
raise ValueError("The number of partitions must be greater than zero.")
self._num_partitions = num_partitions
def load_cifar10_datasets():
if settings.SKEWED:
partitioner = DirichletPartitioner(num_partitions=settings.NUM_CLIENTS, partition_by="label",
alpha=settings.ALPHA, self_balancing=True, min_partition_size=1000,
shuffle=True, seed=43)
else:
partitioner = settings.NUM_CLIENTS
fds = FederatedDataset(dataset="cifar10", partitioners={"train": partitioner})
def apply_transforms(batch):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
batch["img"] = [transform(img) for img in batch["img"]]
return batch
train_loaders = []
val_loaders = []
for partition_id in range(settings.NUM_CLIENTS):
partition = fds.load_partition(partition_id, "train")
partition = partition.with_transform(apply_transforms)
partition = partition.train_test_split(train_size=0.75, seed=43)
train_loaders.append(DataLoader(partition["train"], batch_size=settings.BATCH_SIZE))
val_loaders.append(DataLoader(partition["test"], batch_size=settings.BATCH_SIZE))
return train_loaders, val_loaders
def apply_transforms(batch):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
batch["img"] = [transform(img) for img in batch["img"]]
batch["label"] = batch["fine_label"]
return batch
def load_cifar100_datasets():
if settings.SKEWED:
partitioner = DirichletPartitioner(num_partitions=settings.NUM_CLIENTS, partition_by="label",
alpha=settings.ALPHA, self_balancing=True, min_partition_size=1000,
shuffle=True, seed=43)
else:
partitioner = settings.NUM_CLIENTS
fds = FederatedDataset(dataset="uoft-cs/cifar100", partitioners={"train": partitioner})
train_loaders = []
val_loaders = []
for partition_id in range(settings.NUM_CLIENTS):
partition = fds.load_partition(partition_id, "train")
partition = partition.with_transform(apply_transforms)
partition = partition.train_test_split(train_size=0.75, seed=43)
train_loaders.append(DataLoader(partition["train"], batch_size=settings.BATCH_SIZE))
val_loaders.append(DataLoader(partition["test"], batch_size=settings.BATCH_SIZE))
return train_loaders, val_loaders
def load_custom_datasets(dataset, summary, experiment):
num_partitions = settings.NUM_CLIENTS
if settings.DIFFERENT_NON_MEMBERS:
num_partitions += 1
if 'splitted' in settings.DATASET:
partitioner = PartionedPartitioner(num_partitions=num_partitions)
else:
partitioner = IidPartitioner(num_partitions=num_partitions)
if settings.DATASET in ["heart", "students"]:
fds = FederatedDataset(dataset=f"{settings.HUGGINGFACE_USERNAME}/{dataset}_splitted", partitioners={"train": partitioner})
else:
fds = FederatedDataset(dataset=f"{settings.HUGGINGFACE_USERNAME}/{dataset}", partitioners={"train": partitioner})
if 'splitted' in settings.DATASET:
label_skewness = calculate_label_skew(fds, settings.NUM_CLIENTS)
print("The label skewness of this dataset is: ", label_skewness)
summary.append(f"The label skewness of this dataset is: {label_skewness}")
experiment.log_parameter(f"label-skewness", label_skewness)
feature_skewness = calculate_feature_skew(fds, settings.NUM_CLIENTS)
print("The feature skewness of this dataset is: ", feature_skewness)
summary.append(f"The feature skewness of this dataset is: {feature_skewness}")
experiment.log_parameter(f"feature-skewness", feature_skewness)
train_loaders = []
val_loaders = []
for partition_id in range(num_partitions):
partition = fds.load_partition(partition_id)
partition = partition.train_test_split(train_size=0.75, seed=43)
train_loaders.append(
DataLoader(CustomDataset(partition["train"].with_format("torch")), batch_size=settings.BATCH_SIZE))
val_loaders.append(
DataLoader(CustomDataset(partition["test"].with_format("torch")), batch_size=settings.BATCH_SIZE))
return train_loaders, val_loaders, summary
def load_generated_data(target_skewness, num_clients=10, num_datapoints_per_client=600, num_classes=10):
if settings.SKEWED.lower() == "label":
counts_per_partition, skewness = generate_datasets.generate_label_skewed_counts(num_clients,
num_datapoints_per_client,
num_classes,
target_skewness)
print(f"Counts per partition: {counts_per_partition}")
partitions = generate_datasets.generate_samples(counts_per_partition, num_classes=num_classes)
print(f"Label skewness of {skewness}, Feature skewness of {calculate_feature_skew(partitions, num_clients)}")
elif settings.SKEWED.lower() == "feature":
partitions, skewness = generate_datasets.generate_feature_skewed_dataset()
print(f"Label skewness of {calculate_label_skew(partitions, num_clients)}, Feature skewness of {skewness}")
elif settings.SKEWED.lower() == "both":
partitions, label_skew, feature_skew = generate_datasets.generate_combined_skewed_dataset()
print(f"Label skewness of {label_skew}, Feature skewness of {feature_skew}")
skewness = None
else:
ValueError(f"Invalid skewness type '{settings.SKEWED}'. Please choose either 'label' or 'feature'.")
train_loaders = []
val_loaders = []
for data, labels in partitions:
dataset = GeneratedDataset(data, labels)
train, val = random_split(dataset, [round(.8 * len(dataset)), round(.2 * len(dataset))])
train_loaders.append(DataLoader(train, batch_size=settings.BATCH_SIZE, shuffle=True))
val_loaders.append(DataLoader(val, batch_size=settings.BATCH_SIZE, shuffle=True))
return train_loaders, val_loaders, skewness
class AttackDataset(IterableDataset):
def __init__(self, data, len):
self.datapoints = data
self.len = len
def __len__(self):
return self.len
def __iter__(self):
return self.datapoints