-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata_class.py
375 lines (290 loc) · 13.9 KB
/
data_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from settings import *
import numpy as np
import _pickle as pickle
import os
import midi_functions as mf
import matplotlib.patches as mpatches
import matplotlib
from matplotlib import pyplot as plt
from matplotlib import colors
from matplotlib2tikz import save as tikz_save
# ----------------------------------------------------------------------------------------------
# Harmonicity evaluation
#found on https://arxiv.org/pdf/1709.06298.pdf MuseGAN
#originally from https://www.researchgate.net/publication/200806168_Detecting_harmonic_change_in_musical_audio
#code modified from
#https://github.com/salu133445/musegan
# ----------------------------------------------------------------------------------------------
def get_tonal_matrix(r1=1.0, r2=1.0, r3=0.5):
tm = np.empty((6, 12), dtype=np.float32)
tm[0, :] = r1*np.sin(np.arange(12)*(7./6.)*np.pi)
tm[1, :] = r1*np.cos(np.arange(12)*(7./6.)*np.pi)
tm[2, :] = r2*np.sin(np.arange(12)*(3./2.)*np.pi)
tm[3, :] = r2*np.cos(np.arange(12)*(3./2.)*np.pi)
tm[4, :] = r3*np.sin(np.arange(12)*(2./3.)*np.pi)
tm[5, :] = r3*np.cos(np.arange(12)*(2./3.)*np.pi)
return tm
#returns nan if one of the chromas is empty
def tonal_dist(beat_chroma1, beat_chroma2):
#skip empty bars
if np.sum(beat_chroma1) == 0 or np.sum(beat_chroma1) == 0:
return np.nan
beat_chroma1 = beat_chroma1 / np.sum(beat_chroma1)
beat_chroma2 = beat_chroma2 / np.sum(beat_chroma2)
tonal_matrix = get_tonal_matrix()
c1 = np.matmul(tonal_matrix, beat_chroma1)
c2 = np.matmul(tonal_matrix, beat_chroma2)
return np.linalg.norm(c1-c2)
def to_chroma(track):
chroma = track.reshape(track.shape[0], 12, -1).sum(axis=2)
return chroma
#use same resolutition in terms of bars.
#museGAN used resolution = 24 with a bar-length of 96, so they had a resolution of a fourth of a bar
def metrics_harmonicity(chroma1, chroma2, resolution=SMALLEST_NOTE//4):
score_list = []
for r in range(chroma1.shape[0]//resolution):
chr1 = np.sum(chroma1[resolution*r: resolution*(r+1)], axis=0)
chr2 = np.sum(chroma2[resolution*r: resolution*(r+1)], axis=0)
dist = tonal_dist(chr1, chr2)
score_list.append(tonal_dist(chr1, chr2))
return np.nanmean(score_list)
def get_harmonicity_scores_for_each_track_combination(unrolled_pianoroll):
if unrolled_pianoroll.ndim > 2:
length = unrolled_pianoroll.shape[0]
spm = np.empty((length, max_voices, max_voices))
for i in range(length):
spm[i] = get_harmonicity_scores_for_each_track_combination(unrolled_pianoroll[i])
return np.nanmean(spm, axis=0)
score_pair_matrix = np.zeros((max_voices, max_voices))
chromas = []
for voice in range(max_voices):
track = np.copy(unrolled_pianoroll[voice::max_voices])
chroma = to_chroma(track)
chromas.append(chroma)
for voice_1 in range(max_voices):
for voice_2 in range(voice_1):
score_pair_matrix[voice_1, voice_2] = metrics_harmonicity(chromas[voice_1], chromas[voice_2])
score_pair_matrix[voice_2, voice_1] = score_pair_matrix[voice_1, voice_2]
return score_pair_matrix
# ----------------------------------------------------------------------------------------------
# Signature vector evaluation
# ----------------------------------------------------------------------------------------------
def get_statistics_on_list(l, scale=1.0):
stats = []
highest = 0
lowest = 0
mean = 0
std = 0
if len(l) > 0:
highest = np.max(l)
lowest = np.min(l)
mean = np.mean(l)
std = np.std(l)
stats.append(highest / scale)
stats.append(lowest / scale)
stats.append(mean / scale)
stats.append(std / scale)
return stats
def signature_from_index(song):
signature_list = []
#preprocessing of statistics
polyphonic_count = 0
previous_notes = ()
all_notes_flattened_list = []
pitch_interval_range_list = []
duration_list = []
held_notes = []
held_notes_how_long = []
for notes in song:
#update the held_notes
for note in held_notes:
index = held_notes.index(note)
if note not in notes:
duration_list.append(held_notes_how_long[index])
del held_notes[index]
del held_notes_how_long[index]
for note in notes:
all_notes_flattened_list.append(note)
if note in held_notes:
held_notes_how_long[held_notes.index(note)] += 1
else:
held_notes.append(note)
held_notes_how_long.append(1)
#intervals between two consecutive notes (with or without being separated by a period of silence)
#the notes may not be aligned -> find notes which are close to before in terms of absolute difference
if len(notes) != len(previous_notes) and len(notes) != 0 and len(previous_notes) != 0:
#hard case: found the notes that can be called 'consecutive'
if len(notes) < len(previous_notes):
shorter_list = notes
longer_list = previous_notes
else:
shorter_list = previous_notes
longer_list = notes
shortest_distance_to_other_notes = []
for pitch in longer_list:
shortest_distance = 9999
for other_pitch in shorter_list:
dist = abs(pitch-other_pitch)
if dist < shortest_distance:
shortest_distance = dist
shortest_distance_to_other_notes.append(shortest_distance)
truncated_list = []
for index in np.argsort(shortest_distance_to_other_notes)[:len(shorter_list)]:
truncated_list.append(longer_list[index])
#only take those values of the longer list, which have the shortest distance to the shorter notes
zip_pitch_list = zip(sorted(shorter_list), sorted(truncated_list))
else:
#easy case: just compare the sorted notes
zip_pitch_list = zip(sorted(notes), sorted(previous_notes))
for (note_1, note_2) in zip_pitch_list:
pitch_interval_range_list.append(abs(note_1-note_2)) #original: abs, but 2 notes upwards and downwards shouldn't be the same, future improvement
if len(notes) > 1:
polyphonic_count += 1
#if there is silence, ignore this step
if len(notes) > 0:
previous_notes = notes
else:
duration_list.extend(held_notes_how_long)
held_notes = []
held_notes_how_long = []
#number of total (held or played right after) notes divided by length
signature_list.append(len(duration_list) / len(song))
#occupation rate in piano_roll
signature_list.append(len(all_notes_flattened_list) / len(song))
#polyphonic rate
signature_list.append(polyphonic_count / len(song))
#pitch range descriptors
signature_list.extend(get_statistics_on_list(all_notes_flattened_list, scale=127))
#pitch interval range
signature_list.extend(get_statistics_on_list(pitch_interval_range_list, scale=127))
#duration range
signature_list.extend(get_statistics_on_list(duration_list, scale=1.0))
return signature_list
def signature_from_pianoroll(pianoroll):
song = []
for step in pianoroll:
indices = step.nonzero()[0]
#add low_crop because pianoroll is shifted
indices = [x + low_crop for x in indices]
song.append(tuple(indices))
return signature_from_index(song)
def signature_form_unrolled_pianoroll(pianoroll, voices, include_silent_note):
poly_sample = monophonic_to_khot_pianoroll(pianoroll, max_voices)
if include_silent_note:
poly_sample = poly_sample[:,:-1]
return signature_from_pianoroll(poly_sample)
def mahalanobis_distance(x, mean, cov):
cov_I = np.linalg.pinv(cov)
diff = x - mean
return np.sqrt(np.dot(np.dot(diff, cov_I), diff.T))
def get_mean_and_cov_from_vector_list(vector_list):
mean = np.mean(vector_list, axis=0)
cov = np.cov(np.transpose(vector_list))
return mean, cov
# ----------------------------------------------------------------------------------------------
# Pianoroll manipulations
# ----------------------------------------------------------------------------------------------
def monophonic_to_khot_pianoroll(pianoroll, max_voices, set_all_nonzero_to_1=True):
assert(max_voices > 1)
polyphonic_X = np.zeros((pianoroll.shape[0]//max_voices, pianoroll.shape[1]))
for step in range(pianoroll.shape[0]):
polyphonic_X[step//max_voices] += pianoroll[step]
#it may happen, that a note is now higher than 1 in polyphonic X
#set all nonzero indices to 1
if set_all_nonzero_to_1:
nonzero_indices = np.nonzero(polyphonic_X)
polyphonic_X[nonzero_indices] = 1
return polyphonic_X
# ----------------------------------------------------------------------------------------------
# Draw plots from pianoroll
# ----------------------------------------------------------------------------------------------
def draw_mixture_pianoroll(song_1, song_2, mixture_song, name_1='Song 1', name_2='Song 2', mixture_name='Mixture', show=False, save_path=''):
if song_1.shape!=song_2.shape or song_1.shape!=mixture_song.shape:
print("Shape mismatch. Not drawing a plot.")
return
draw_matrix = song_1 + song_2 * 2 + mixture_song * 4
cm = matplotlib.cm.get_cmap('jet')
song_1_color = cm(1/7)
song_2_color = cm(2/7)
song_1_song_2_color = cm(3/7)
mixture_color = cm(4/7)
song_1_mixture_color = cm(5/7)
song_2_mixture_color = cm(6/7)
song_1_song_2_mixture_color = cm(1.0)
song_1_patch = mpatches.Patch(color=song_1_color, label=name_1)
song_2_patch = mpatches.Patch(color=song_2_color, label=name_2)
song_1_song_2_patch = mpatches.Patch(color=song_1_song_2_color, label=name_1 + " & " + name_2)
mixture_patch = mpatches.Patch(color=mixture_color, label=mixture_name)
song_1_mixture_patch = mpatches.Patch(color=song_1_mixture_color, label=name_1 + " & " + mixture_name)
song_2_mixture_patch = mpatches.Patch(color=song_2_mixture_color, label=name_2 + " & " + mixture_name)
song_1_song_2_mixture_patch = mpatches.Patch(color=song_1_song_2_mixture_color, label=name_1 + " & " + name_2 + " & " + mixture_name)
plt.figure(figsize=(20.0, 10.0))
plt.title('Mixture-Pitch-plot of ' + name_1 + ' and ' + name_2, fontsize=10)
plt.legend(handles=[song_1_patch, song_2_patch, song_1_song_2_patch, mixture_patch, song_1_mixture_patch, song_2_mixture_patch, song_1_song_2_mixture_patch], loc='upper right', prop={'size': 8})
plt.pcolor(draw_matrix, cmap='jet', vmin=-7, vmax=7)
if show:
plt.show()
if len(save_path) > 0:
plt.savefig(save_path)
tikz_save(save_path + ".tex", encoding='utf-8', show_info=False)
plt.close()
def draw_difference_pianoroll(original, predicted, name_1='Original', name_2='Predicted', show=False, save_path=''):
if original.shape!=predicted.shape:
print("Shape mismatch. Not drawing a plot.")
return
draw_matrix = original + 2 * predicted
cm = colors.ListedColormap(['white', 'blue', 'red', 'black'])
bounds=[0,1,2,3,4]
n = colors.BoundaryNorm(bounds, cm.N)
original_color = cm(1/3)
predicted_color = cm(2/3)
both_color = cm(1.0)
original_patch = mpatches.Patch(color=original_color, label=name_1)
predicted_patch = mpatches.Patch(color=predicted_color, label=name_2)
both_patch = mpatches.Patch(color=both_color, label='Notes in both songs')
plt.figure(figsize=(20.0, 10.0))
plt.title('Difference-Pitch-plot of ' + name_1 + ' and ' + name_2, fontsize=10)
plt.legend(handles=[original_patch, predicted_patch, both_patch], loc='upper right', prop={'size': 8})
plt.pcolor(draw_matrix, cmap=cm, vmin=0, vmax=3, norm=n)
if show:
plt.show()
if len(save_path) > 0:
plt.savefig(save_path)
tikz_save(save_path + ".tex", encoding='utf-8', show_info=False)
plt.close()
def draw_pianoroll(pianoroll, name='Notes', show=False, save_path=''):
cm = matplotlib.cm.get_cmap('Greys')
notes_color = cm(1.0)
notes_patch = mpatches.Patch(color=notes_color, label=name)
plt.figure(figsize=(20.0, 10.0))
plt.title('Pianoroll Pitch-plot of ' + name, fontsize=10)
plt.legend(handles=[notes_patch], loc='upper right', prop={'size': 8})
plt.pcolor(pianoroll, cmap='Greys', vmin=0, vmax=np.max(pianoroll))
if show:
plt.show()
if len(save_path) > 0:
plt.savefig(save_path)
tikz_save(save_path + ".tex", encoding='utf-8', show_info=False)
plt.close()
def instrument_representation_to_programs(I, instrument_attach_method):
programs = []
for instrument_vector in I:
if instrument_attach_method == '1hot-category':
index = np.argmax(instrument_vector)
programs.append(index * 8)
elif instrument_attach_method == 'khot-category':
nz = np.nonzero(instrument_vector)[0]
index = 0
for exponent in nz:
index += 2^exponent
programs.append(index * 8)
elif instrument_attach_method == '1hot-instrument':
index = np.argmax(instrument_vector)
programs.append(index)
elif instrument_attach_method == 'khot-instrument':
nz = np.nonzero(instrument_vector)[0]
index = 0
for exponent in nz:
index += 2^exponent
programs.append(index)
return programs