-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
294 lines (242 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Iterable
from datetime import datetime
import fire
import torch
import torch.nn.init as init
import torchvision
from loguru import logger
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import networks
import synthesis
import utils
from data import UnpairedDataset, PairedDataset
from losses.focal_frequency_loss import FocalFrequencyLoss
from losses.lpips_loss import LPIPSLoss
from losses.perceptual_loss import PerceptualLoss
from test import evaluate_fn
# Small number added to near-zero quantities to avoid numerical instability.
_EPS = 1e-7
def build_criterion(config, device):
loss_weights = config.loss.weight
criterion = dict()
def _empty_l(*args, **kwargs):
return 0
def valid_l(name):
return (
loss_weights["flare"].get(name, 0.0) > 0
or loss_weights["scene"].get(name, 0.0) > 0
)
criterion["l1"] = torch.nn.L1Loss().to(device) if valid_l("l1") else _empty_l
criterion["lpips"] = LPIPSLoss().to(device) if valid_l("lpips") else _empty_l
criterion["ffl"] = FocalFrequencyLoss().to(device) if valid_l("ffl") else _empty_l
criterion["perceptual"] = (
PerceptualLoss(**config.loss.perceptual).to(device)
if valid_l("perceptual")
else _empty_l
)
return criterion
def add_flare(scene, flare, config):
apply_fn = getattr(synthesis, config.augment.way)
kwargs = config.augment[config.augment.way]
return apply_fn(scene, flare, **kwargs)
def init_weights(net, init_type="xavier_uniform", init_gain=1):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method:
normal | xavier_normal | xavier_uniform | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, "weight") and (
classname.find("Conv") != -1 or classname.find("Linear") != -1
):
if init_type == "normal":
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == "xavier_normal":
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == "xavier_uniform":
init.xavier_uniform_(m.weight.data, gain=init_gain)
elif init_type == "kaiming":
init.kaiming_normal_(
m.weight.data, a=0, mode="fan_in", nonlinearity="relu"
)
elif init_type == "orthogonal":
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError(
"initialization method [%s] is not implemented" % init_type
)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif (
classname.find("BatchNorm2d") != -1
): # BatchNorm Layer's weight is not a matrix;
# only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
logger.info("initialize network with %s" % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def backup_config(config, output_dir):
cur = datetime.now()
config_name = f'config@{cur.strftime("%Y-%m-%d_%H-%M-%S")}.yml'
(output_dir / config_name).write_text(OmegaConf.to_yaml(config))
logger.debug(f"backup config at {output_dir / config_name}")
def train(config):
device = torch.device("cuda")
output_dir = Path(config.work_dir) / f"checkpoints" / config.name
if not output_dir.exists():
output_dir.mkdir(parents=True)
logger.add(output_dir / "file_{time}.log")
backup_config(config, output_dir)
generator = utils.instantiate(networks, config.model.generator)
generator = generator.to(device)
init_weights(generator)
logger.info(f"build generator over: {generator.__class__.__name__}")
optimizer = torch.optim.Adam(
[p for p in generator.parameters() if p.requires_grad], lr=config.optimizer.lr
)
logger.info(f"build optimizer over: {optimizer}")
criterion = build_criterion(config, device)
train_dataset = UnpairedDataset(**config.train.dataset)
logger.info(
f"build train_dataset over: {train_dataset}. with config {config.train.dataset}"
)
logger.info(f"{len(train_dataset)=}")
train_dataloader = DataLoader(train_dataset, **config.train.dataloader)
logger.info(f"build train_dataloader with config: {config.train.dataloader}")
tb_path = Path(config.work_dir) / f"tb_logs" / config.name
if not tb_path.exists():
tb_path.mkdir(parents=True)
logger.info(f"mkdir {tb_path}")
tb_writer = SummaryWriter(tb_path.as_posix())
running_scalars = defaultdict(float)
start_epoch = 1
if config.get("resume_from", None) is not None:
checkpoint_path = Path(config.resume_from)
if not checkpoint_path.exists():
raise FileNotFoundError(f"checkpoint '{checkpoint_path}' is not found")
ckp = torch.load(checkpoint_path.as_posix(), map_location=torch.device("cpu"))
start_epoch = ckp["epoch"] + 1
generator.load_state_dict(ckp["g"])
optimizer.load_state_dict(ckp["g_optim"])
logger.success(f"load state_dict from {checkpoint_path}")
evaluate_dataset = PairedDataset(**config.evaluate.dataset)
evaluate_dataloader = DataLoader(evaluate_dataset, **config.evaluate.dataloader)
def flare_generator(images):
pred_scene = generator(images).clamp(0.0, 1.0)
pred_flare = synthesis.remove_flare(images, pred_scene)
return pred_flare
for epoch in range(start_epoch, config.train.num_epoch + 1):
epoch_start_time = time.time()
logger.info(f"EPOCH[{epoch}/{config.train.num_epoch}] START")
generator.train()
for iteration, batch in tqdm(
enumerate(train_dataloader, 1),
total=len(train_dataloader),
leave=False,
ncols=120,
):
scene, flare = batch["a"]["image"], batch["b"]["image"]
scene = scene.to(device, non_blocking=True)
flare = flare.to(device, non_blocking=True)
scene, flare, combined, gamma = add_flare(scene, flare, config)
pred_scene = generator(combined).clamp(0.0, 1.0)
pred_flare = synthesis.remove_flare(combined, pred_scene, gamma)
flare_mask = synthesis.get_highlight_mask(flare)
# Fill the saturation region with the ground truth, so that no L1/L2
# loss and better for perceptual loss since
# it matches the surrounding scenes.
masked_scene = pred_scene * (1 - flare_mask) + scene * flare_mask
masked_flare = pred_flare * (1 - flare_mask) + flare * flare_mask
loss = dict()
for t, pred, gt in [
("scene", masked_scene, scene),
("flare", masked_flare, flare),
]:
l = dict(
l1=criterion["l1"](pred, gt),
ffl=criterion["ffl"](pred, gt),
lpips=criterion["lpips"](pred, gt, value_range=(0, 1)),
perceptual=criterion["perceptual"](pred, gt, value_range=(0, 1)),
)
for k in l:
if config.loss.weight[t].get(k, 0.0) > 0:
loss[f"{t}_{k}"] = config.loss.weight[t].get(k, 0.0) * l[k]
optimizer.zero_grad()
total_loss = sum(loss.values())
total_loss.backward()
optimizer.step()
##########################################
# log stuff
for k, v in loss.items():
running_scalars[k] = running_scalars[k] + v.detach().mean().item()
global_step = (epoch - 1) * len(train_dataloader) + iteration
if global_step % config.log.tensorboard.scalar_interval == 0:
tb_writer.add_scalar(
"metric/total_loss", total_loss.detach().cpu().item(), global_step
)
for k in running_scalars:
v = running_scalars[k] / config.log.tensorboard.scalar_interval
running_scalars[k] = 0.0
tb_writer.add_scalar(f"loss/{k}", v, global_step)
if global_step % config.log.tensorboard.image_interval == 0:
images = utils.grid_transpose(
[combined, scene, pred_scene, flare, pred_flare]
)
images = torchvision.utils.make_grid(
images, nrow=5, value_range=(0, 1), normalize=True
)
tb_writer.add_image(
f"train/combined|real_scene|pred_scene|real_flare|pred_flare",
images,
global_step,
)
logger.info(
f"EPOCH[{epoch}/{config.train.num_epoch}] END "
f"Taken {(time.time() - epoch_start_time) / 60.0:.4f} min"
)
if epoch % config.log.checkpoint.interval_epoch == 0:
to_save = dict(
g=generator.state_dict(), g_optim=optimizer.state_dict(), epoch=epoch
)
torch.save(to_save, output_dir / f"epoch_{epoch:03d}.pt")
logger.info(f"save checkpoint at {output_dir / f'epoch_{epoch:03d}.pt'}")
if epoch % config.log.evaluate.interval_epoch == 0:
generator.eval()
with torch.no_grad():
metrics = evaluate_fn(
config, evaluate_dataloader, flare_generator, device=device
)
generator.train()
logger.info(
f"EPOCH[{epoch}/{config.train.num_epoch}] metrics "
+ "\t".join([f"{k}={v:.4f}" for k, v in metrics.items()])
)
for m, v in metrics.items():
tb_writer.add_scalar(f"evaluate/{m}", v, epoch * len(train_dataloader))
logger.success(f"train over.")
def main(config, *omega_options, gpus="all"):
config = Path(config)
assert config.exists(), f"config file {config} do not exists."
omega_options = [str(o) for o in omega_options]
cli_config = OmegaConf.from_cli(omega_options)
if len(cli_config) > 0:
logger.info(f"set options from cli:\n{OmegaConf.to_yaml(cli_config)}")
config = OmegaConf.merge(OmegaConf.load(config), cli_config)
if gpus != "all":
gpus = gpus if isinstance(gpus, Iterable) else [gpus]
gpus = ",".join([str(g) for g in gpus])
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
logger.info(f"set CUDA_VISIBLE_DEVICES={gpus}")
train(config)
if __name__ == "__main__":
fire.Fire(main)