-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
211 lines (187 loc) · 7.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torchvision.models as models
from torch.autograd import Variable
import torch.optim as optim
import torch.utils.data as data_utils
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import sys
import numpy as np
import random
import argparse
import os
parser = argparse.ArgumentParser(description='Multi-instance learning')
parser.add_argument('-d', '--dataset', default='thyroid', choices=['thyroid', 'breast'])
parser.add_argument('-b', '--backbone', default='resnet18', choices=['resnet18', 'resnet34'])
parser.add_argument('-m', '--method', default='BFA',choices=['B', 'BF', 'BFA'],
help='B:baseline; BF:baseline+fpn; BFA:baseline+FPN+attention;')
parser.add_argument('-p', '--mode', default='train', choices=['train', 'test'])
parser.add_argument('-l', '--loader', default='formal', choices=['formal', 'debug'],
help='debug mode will use the dataloader that load the data during the training instead of load the whole dataset at the begining')
parser.add_argument('-s', '--save_weight', default='./params.pkl')
parser.add_argument('-w', '--load_weight', default='./params.pkl')
parser.add_argument('-r', '--random_seed', default=4, type=int)
parser.add_argument('-g', '--gpu', default='0')
args = parser.parse_args()
model_name_dict = {'B' : 'baseline', 'BF' : 'baseline+fpn',
'BFA' : 'baseline+FPN+attention'}
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# set random seed
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_seed(args.random_seed)
# set dataloader
if args.loader == 'formal':
from utils.data_loader import ThyroidDataset
elif args.loader == 'debug':
from utils.data_loader_new import ThyroidDataset
# set model
if args.method == 'B':
from network.baseline import ResnetAttention
elif args.method == 'BF':
from network.fpn import ResnetAttention
elif args.method == 'BFA':
from network.fpn_attention import ResnetAttention
# set backbone
def backbone_network(num_classes=2, pretrained=True):
if args.backbone == 'resnet18':
model = models.resnet18(pretrained)
elif args.backbone == 'resnet34':
model = models.resnet34(pretrained)
return ResnetAttention(model, num_classes)
# set dataset
if args.dataset == 'thyroid':
img_path = '../data/old_aug/'
train_csv_path = '../data/old_csv/multi_layer_15.csv'
test_csv_path = '../data/old_csv/val_multi_15.csv'
elif args.dataset == 'breast':
img_path = '../data/breast/'
train_csv_path = '../data/breast_csv/train.csv'
test_csv_path = '../data/breast_csv/test.csv'
print('loading model {}, using backbone {}, random seed {}, {} dataset'.format(model_name_dict[args.method], args.backbone, args.random_seed, args.dataset) )
model = backbone_network(num_classes=2, pretrained=True)
model.cuda()
cudnn.benchmark = True
if args.mode == 'train':
print('loading training set')
train_loader = data_utils.DataLoader(ThyroidDataset(img_path = img_path, csv_path = train_csv_path), batch_size=1,shuffle=True)
print('loading test set')
test_loader = data_utils.DataLoader(ThyroidDataset(img_path = img_path, csv_path = test_csv_path),
batch_size=1,shuffle=False)
print('finish loading')
optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
def test(epoch, save_model=False):
correct = 0
test_loss = 0.0
true_positive = 0
false_positive = 0
true_negative = 0
false_negative = 0
best_acc = 0
criterion = torch.nn.CrossEntropyLoss()
with torch.no_grad():
for data,label in test_loader:
bag_label = label[0]
data, bag_label = data.cuda(), bag_label.cuda()
data, bag_label = Variable(data), Variable(bag_label)
output = model.forward(data)
if args.mode == 'test':
real_label.append(bag_label)
predicted_label.append(output)
running_loss = criterion(output, bag_label)
test_loss += running_loss.item()
predicted = torch.max(output,1)[1]
if predicted == int(bag_label.item()):
correct = correct + 1
if predicted==0 and int(bag_label.item())==0:
true_negative += 1
elif predicted==0 and int(bag_label.item())==1:
false_negative += 1
elif predicted==1 and int(bag_label.item())==0:
false_positive += 1
elif predicted==1 and int(bag_label.item())==1:
true_positive += 1
try:
precision = true_positive / (true_positive + false_positive)
recall = true_positive / (true_positive + false_negative)
f1_score = 2 * precision * recall / (precision + recall)
except:
precision = 0
recall = 0
f1_score = 0
acc = correct / len(test_loader)
print('epoch:{}, Test Loss:{:.3f}, Test Acc:{:.3f}, precision:{:.3f}, recall:{:.3f}, f1_score:{:.3f}'.format(epoch,test_loss / len(test_loader), acc, precision, recall, f1_score))
if save_model and acc > best_acc:
best_acc = acc
torch.save(model.state_dict(), args.save_weight)
test_loss = 0.0
correct = 0
def train(epoch):
model.train()
train_loss = 0.0
correct = 0
true_positive = 0
false_positive = 0
true_negative = 0
false_negative = 0
criterion = torch.nn.CrossEntropyLoss()
for batch_idx, (data, label) in enumerate(train_loader):
bag_label = label[0]
data, bag_label = data.cuda(), bag_label.cuda()
data, bag_label = Variable(data), Variable(bag_label)
optimizer.zero_grad()
output = model.forward(data)
loss = criterion(output, bag_label)
loss.backward()
optimizer.step()
train_loss += loss.item()
predicted = torch.max(output,1)[1]
if predicted == int(bag_label.item()):
correct = correct + 1
if predicted==0 and int(bag_label.item())==0:
true_negative += 1
elif predicted==0 and int(bag_label.item())==1:
false_negative += 1
elif predicted==1 and int(bag_label.item())==0:
false_positive += 1
elif predicted==1 and int(bag_label.item())==1:
true_positive += 1
try:
precision = true_positive / (true_positive + false_positive)
recall = true_positive / (true_positive + false_negative)
f1_score = 2 * precision * recall / (precision + recall)
except:
precision = 0
recall = 0
f1_score = 0
print('epoch:{}, Train Loss:{:.3f} | Train Acc:{:.3f}'.format(epoch, train_loss / len(train_loader),correct / len(train_loader)))
train_loss = 0.0
correct = 0
if __name__ == '__main__':
print(args)
if args.mode == 'train':
for epoch in range(70):
train(epoch)
test(epoch, save_model=True)
torch.cuda.empty_cache()
torch.save(model.state_dict(), args.save_weight)
if args.mode == 'test':
predicted_label = []
real_label = []
model.load_state_dict(torch.load(args.load_weight))
model.cuda()
test(0)
for i in range(len(predicted_label)):
predicted_label[i] = predicted_label[i].squeeze()
predicted_label[i] = predicted_label[i].cpu().numpy()
predicted_label[i] = np.exp(predicted_label[i])
predicted_label[i] = predicted_label[i] / predicted_label[i].sum()
predicted_label[i] = predicted_label[i][1]
real_label[i] = real_label[i].cpu().numpy()
real_label[i] = real_label[i][0]