-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsbert.py
112 lines (94 loc) · 3.88 KB
/
sbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
'''
Ladder Loss for Coherent Visual Semantic Embedding
Copyright (C) 2018-2020, Authors of AAAI2020 "Ladder Loss for Coherent Visual-Semantic Embedding"
Copyright (C) 2018-2020, Mo Zhou <cdluminate@gmail.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
from typing import *
import torch as th
import torch.nn.functional as F
import os, sys, json, re
import pickle
import random
import json
import numpy as np
from tqdm import tqdm
class SbertSimMat(object):
'''
A class that provides similarity matrix, aka link strength matrix
'''
def __init__(self,
trnpath='annotations/captions_train2014.json',
valpath='annotations/captions_val2014.json',
lang_model='paraphrase-distilroberta-base-v1',
cache=f'{__file__}.SbertSimMat.cache',
diagone=False,
verbose=True):
jtrn = json.load(open(trnpath, 'r'))
jval = json.load(open(valpath, 'r'))
annos = jtrn['annotations'] + jval['annotations']
if verbose:
print(f' SbertSimMat*> got {len(annos)} annotations')
self.annos = {int(x['id']): x['caption'] for x in annos}
self.vectors = {}
if os.path.exists(cache):
print(' SimMat*> Loading cache from', cache)
self.vectors = pickle.load(open(cache, 'rb'))
else:
# Load the pretrained model
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(lang_model)
# calculate and store
for (sid, caption) in tqdm(self.annos.items()):
emb = model.encode(caption, convert_to_tensor=True)
self.vectors[int(sid)] = emb.detach().cpu().numpy()
pickle.dump(self.vectors, open(cache, 'wb'))
# special options
self.diagone = diagone
def __call__(self, sids):
vecs = np.stack([self.vectors[int(sid)] for sid in sids], axis=0)
vecs = vecs / np.linalg.norm(vecs, axis=1).reshape(-1,1)
if self.diagone:
smat = vecs @ vecs.T
np.fill_diagonal(smat, 1.)
return smat
return vecs @ vecs.T
def __getitem__(self, indeces):
if not isinstance(indeces, list):
raise TypeError
return self.__call__(indeces)
class F30kSbertSimMat(SbertSimMat):
'''
similarity matrix for f30k
'''
def __init__(self, annos,
lang_model='paraphrase-distilroberta-base-v1',
cache=f'{__file__}.F30kSbertSimMat.cache',
diagone=False,
verbose=True):
if verbose:
print(f' F30kSimMat*> got {len(annos)} annotations')
#self.annos = {int(x['id']): x['caption'] for x in annos.all()}
self.vectors = {}
if os.path.exists(cache):
print(' F30kSimMat*> Loading cache from', cache)
self.vectors = pickle.load(open(cache, 'rb'))
else:
# Load the pretrained model
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(lang_model)
# calculate and store
for (sid, caption) in tqdm(annos.all()):
emb = model.encode(caption, convert_to_tensor=True)
self.vectors[int(sid)] = emb.detach().cpu().numpy()
pickle.dump(self.vectors, open(cache, 'wb'))
# special options
self.diagone = diagone