-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathORB_FlannMatcher.cpp
120 lines (90 loc) · 3.54 KB
/
ORB_FlannMatcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/**
* ORB matcher test with filter
* @vonzhou
*/
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/features2d.hpp"
using namespace cv;
void readme();
std::vector<DMatch> filter_distance(Mat descriptors,std::vector< DMatch > matches);
int main( int argc, char** argv ){
if( argc != 3 ) {
readme();
return -1;
}
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using ORB Detector
ORB detector(1000,1.1f,8,31,0,2,ORB::HARRIS_SCORE,31);
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors
OrbDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
//FlannBasedMatcher matcher;
// BFMatcher matcher(NORM_L2, true);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
std::vector< DMatch > matches, matches2;
matcher->match( descriptors_1, descriptors_2, matches );
matcher->match( descriptors_2, descriptors_1, matches2 );
std::vector< DMatch > good_matches1, good_matches2, better_matches;
good_matches1 = filter_distance(descriptors_1, matches);
good_matches2 = filter_distance(descriptors_2, matches2);
for(int i=0; i<good_matches1.size(); i++){
DMatch temp1 = good_matches1[i];
for(int j=0; j<good_matches2.size(); j++){
DMatch temp2 = good_matches2[j];
if(temp1.queryIdx == temp2.trainIdx && temp2.queryIdx == temp1.trainIdx) {
better_matches.push_back(temp1);
break;
}
}
}
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
better_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Show detected matches
imshow( "Good Matches", img_matches );
for( int i = 0; i < (int)better_matches.size(); i++ ) {
printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, better_matches[i].queryIdx, better_matches[i].trainIdx );
}
waitKey(0);
return 0;
}
std::vector<DMatch> filter_distance(Mat descriptors,std::vector< DMatch > matches){
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors.rows; i++ ) {
double dist = matches[i].distance;
if( dist < min_dist )
min_dist = dist;
if( dist > max_dist )
max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
//-- small)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors.rows; i++ )
{ if( matches[i].distance <= max(2*min_dist,0.02) )
{ good_matches.push_back( matches[i]); }
}
return good_matches;
}
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }