-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPopulation.py
256 lines (205 loc) · 9.41 KB
/
Population.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import copy
class Pops():
def __init__(self, params,**kwargs):
'''
:param kwargs: dict
such as:
{
"popSize" : 40
"vardim": 50
"bound" : [[l_1,l_2,...,l_n],[u_1,u_2,...,u_n]] # and n=vardim
"init_type" : 0 for oringin、1 for latin
"personal_type": True with Personal_Best updated
"func" : function of calculating fitness
"M" : matrix of input
"S" : shuffle of input
"history" : True with historical global_best_fitness recorded
"omiga" : 1e-8
}
'''
self.popSize, self.vardim, self.bound = 40, 50, np.tile([[-100],[100]],50)
self.func,self.M,self.S = None,np.eye(self.vardim),np.zeros(self.vardim)
self.init_type,self.personal_type = 0,False
self.global_best_fitness_history,self.history,self.population_history, =[],True,[]
self.exploration_history, self.exploitation_history, self.d_history = [],[],[]
self.omiga = 1e-10
self.failue_count = 0
self.absorb_p = 0.9
self.update_pbest = True
self.__set_keyword_arguments(params)
self.__set_keyword_arguments(kwargs)
self.bound = np.array(self.bound) # to narray
self.solution = {
0 : self.oringin,
1 : self.latin
}
self.fitness, self.global_best_fitness, self.personal_best_fitness = None,None,None
self.global_best_position, self.personal_best_position = None,None
self.a_min = np.tile(self.bound[0], (self.popSize, 1))
self.a_max = np.tile(self.bound[1], (self.popSize, 1))
self.a_max_min = self.a_max-self.a_min
#print(kwargs)
self.pop = self.solution[self.init_type]() # 种群初始化
self.v = self.bound[0]+np.random.random((self.popSize,self.vardim))*(self.bound[1]-self.bound[0]) #速度初始化
self.update_firstly()
#self.updated() #更新or排序:fitness、global_best_fitness、personal_best_fitness、global_best_position、personal_best_position、
def __set_keyword_arguments(self, kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
def oringin(self):
pop = np.random.uniform(self.bound[0],self.bound[1],size=(self.popSize,self.vardim))#np.random.random((self.popSize,self.vardim))*(self.bound[1]-self.bound[0])+self.bound[0]
#print("o=",pop)
return pop
def latin(self):
step = np.linspace(self.bound[0],self.bound[1],self.popSize+1)
pop = np.random.uniform(step[0:self.popSize],step[1:self.popSize+1],(self.popSize,self.vardim))
#print("l=",pop)
for i in range(self.vardim): #打乱每一维
np.random.shuffle(pop[:, i])
return pop
def border_check(self,*X):
pop = self.oringin()
if X==():
X = self.pop
idx = (X<self.a_min)
X[idx] = pop[idx]
idx = (self.pop>self.a_max)
X[idx] = pop[idx]
self.pop = X
# self.pop = np.clip(self.pop,a_min=self.bound[0],a_max=self.bound[1])
def border_check_model2(self):
self.pop = np.clip(self.pop, a_min=self.a_min, a_max=self.a_max)
def border_check_damping(self):
idx = (self.pop < self.a_min)
temp = (self.a_min[idx]-self.pop[idx])
temp = np.minimum(temp,self.a_max_min[idx])
self.pop[idx] = temp*self.absorb_p+self.a_min[idx]
idx = (self.pop > self.a_max)
temp = (self.pop[idx]-self.a_max[idx])
temp = np.minimum(temp, self.a_max_min[idx])
self.pop[idx] = -temp*self.absorb_p + self.a_max[idx]
def border_check_ones(self,x):
if np.any(x<self.bound[0]) or np.any(x>self.bound[1]):
x = np.random.uniform(self.bound[0],self.bound[1],size=self.vardim)
return x
def update_firstly(self):
self.border_check() # 边界检查
self.fitness = np.zeros(self.popSize)
self.fitness = self.func(self.pop)
index = self.__sort_fitness()
self.personal_best_position = copy.deepcopy(self.pop)
self.personal_best_fitness = copy.deepcopy(self.fitness)
self.global_best_position = copy.deepcopy(self.pop[0])
self.global_best_fitness = copy.deepcopy(self.fitness[0])
def calculate_fitness_ones(self,x):
return self.func([x])
def calculate_fitness_borderAlt(self):
self.border_check_damping() #边界检查
self.fitness = np.zeros(self.popSize)
self.fitness = self.func(self.pop)
idx = self.personal_best_fitness>self.fitness
self.personal_best_fitness[idx] = copy.deepcopy(self.fitness[idx])
self.personal_best_position[idx] = copy.deepcopy(self.pop[idx])
idx = np.argmin(self.personal_best_fitness)
self.global_best_fitness = copy.deepcopy(self.personal_best_fitness[idx])
self.global_best_position = copy.deepcopy(self.personal_best_position[idx])
return self.fitness
def calculate_fitness(self):
self.border_check() #边界检查
self.fitness = np.zeros(self.popSize)
self.fitness = self.func(self.pop)
#print(self.fitness,self.personal_best_fitness)
idx = np.where(self.personal_best_fitness > self.fitness)
self.personal_best_fitness[idx] = copy.deepcopy(self.fitness[idx])
self.personal_best_position[idx] = copy.deepcopy(self.pop[idx])
idx = np.argmin(self.personal_best_fitness)
self.global_best_fitness = copy.deepcopy(self.personal_best_fitness[idx])
self.global_best_position = copy.deepcopy(self.personal_best_position[idx])
return self.fitness
def calculate_fitness_no_check(self):
self.fitness = np.zeros(self.popSize)
flag = False
self.fitness = self.func(self.pop)
idx = self.personal_best_fitness > self.fitness
self.personal_best_fitness[idx] = copy.deepcopy(self.fitness[idx])
self.personal_best_position[idx] = copy.deepcopy(self.pop[idx])
idx = np.argmin(self.personal_best_fitness)
self.global_best_fitness = copy.deepcopy(self.personal_best_fitness[idx])
self.global_best_position = copy.deepcopy(self.personal_best_position[idx])
return self.fitness
def __sort_fitness(self):
index = np.argsort(self.fitness)
self.fitness = self.fitness[index]
self.pop = self.pop[index]
self.v = self.v[index]
return index
def sort_pop_by_fitness(self):
index = self.__sort_fitness()
if self.update_pbest:
self.personal_best_position = copy.deepcopy(self.personal_best_position[index])
self.personal_best_fitness = copy.deepcopy(self.personal_best_fitness[index])
def calculate_center(self,n=None):
'''
Please Note that the populations must be sorted by fitness
:param n: nums of better populations
'''
if n==None:
n=int(self.popSize/2)+1
S = 0
F = 0
minf = np.min(self.fitness)
for i in range(n):
temp_fit = 1/(self.fitness[i]-minf+self.omiga)
S = S+self.pop[i]*temp_fit
F = F+temp_fit
return S/(F*n)
def calculate_center_2(self, n=None):
'''
Please Note that the populations must be sorted by fitness
:param n: nums of better populations
'''
if n == None:
n = int(self.popSize / 2) + 1
index = np.argsort(self.personal_best_fitness)
sorted_personal_best_fitness = copy.deepcopy(self.personal_best_fitness[index])
sorted_personal_best_position = copy.deepcopy(self.personal_best_position[index])
S = 0
F = 0
for i in range(n):
temp_fit = 1 / (sorted_personal_best_fitness[i] + self.omiga)
S = S + sorted_personal_best_position[i] * temp_fit
F = F + temp_fit
return S / F
return np.mean(self.pop[:n],0)
def pop_ee(self,flag=True):
if flag==False:
return
self.global_best_fitness_history.append(self.global_best_fitness)
self.population_history.append(((self.pop.mean(0) - self.pop) ** 2).sum() / self.vardim)
self.d_history.append( np.sum( np.abs(np.median(self.pop,0)-self.pop) ) / ( self.popSize*self.vardim ) )
d_history_max = np.max(self.d_history)
self.exploration_history.append(100*self.d_history[-1]/d_history_max)
self.exploitation_history.append(100*np.abs(self.d_history[-1]-d_history_max)/d_history_max)
def updated(self):
self.calculate_fitness()
self.sort_pop_by_fitness()
self.pop_ee()
def updated_with_rool_back(self,X,Xfit,v,flag=True):
self.calculate_fitness()
idx = np.where(Xfit<self.fitness)
self.pop[idx] = copy.deepcopy(X[idx])
self.fitness[idx] = copy.deepcopy(Xfit[idx])
self.v[idx] = copy.deepcopy(v[idx])
self.sort_pop_by_fitness()
self.pop_ee(flag)
def updated_2(self):
self.calculate_fitness_borderAlt()
self.sort_pop_by_fitness()
self.pop_ee()
# def updated_2(self):
# self.calculate_fitness_borderAlt()
# #self.sort_pop_by_fitness()
# if self.history:
# self.global_best_fitness_history.append(self.global_best_fitness)
# self.population_history.append(((self.pop.mean(0)-self.pop)**2).sum()/self.vardim)