-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
584 lines (469 loc) · 27.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import argparse
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, AdamW, lr_scheduler
from tqdm import tqdm
import cv2
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import val # for end-of-epoch mAP
from utils.callbacks import Callbacks
from utils.datasets_rotation import create_dataloader
from utils.general import (LOGGER, check_dataset, check_file, check_img_size,
check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
intersect_dicts, methods, one_cycle,
print_args, strip_optimizer, step_lr_scheduler)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.metrics import fitness_rotate
from utils.plots import plot_labels_rotate
from utils.torch_utils import ModelEMA, de_parallel, select_device, torch_distributed_zero_first
from models.detector import S2ANet as Model
# 对OpenCV的版本进行约束,要求是4.5.1-4.5.5版本之间,
import cv2
cv_version = cv2.__version__
print(f"OpenCV版本:{cv_version}")
assert "4.5" in cv_version and int(cv_version.split('.')[-1]) >= 1
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
def train(hyp, # path/to/hyp.yaml or hyp dictionary
opt,
device,
callbacks
):
save_dir, epochs, batch_size, weights, single_cls, data, resume, noval, nosave, workers, freeze = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.data, \
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
# 是否使用混合精度训练
is_MAP = opt.is_MAP
# Directories
w = save_dir / 'weights' # weights dir
w.mkdir(parents=True, exist_ok=True) # make dir
last, best = w / 'last.pt', w / 'best.pt'
# Hyperparameters
if isinstance(hyp, str):
with open(hyp, errors='ignore') as f:
hyp = yaml.safe_load(f) # load hyps dict
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
# 保存超参数配置文件,和命令行参数配置文件
# Save run settings
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.safe_dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)
# Loggers
data_dict = None
if RANK in [-1, 0]:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
# loggers.wandb为None
if loggers.wandb:
data_dict = loggers.wandb.data_dict
if resume:
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
# 注册各种回调函数
# Register actions
# methods函数是自己写的,返回类的方法
# 这些回调函数,全都写在了日志类中
for k in methods(loggers):
callbacks.register_action(k, callback=getattr(loggers, k))
# Config
plots = True # create plots
cuda = device.type != 'cpu'
init_seeds(1 + RANK)
with torch_distributed_zero_first(LOCAL_RANK):
#
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict['train'], data_dict['val']
num_classes = 1 if single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == num_classes, f'{len(names)} names found for nc={num_classes} dataset in {data}' # check
# Model
check_suffix(weights, '.pt') # check weights
pretrained = weights.endswith('.pt')
if pretrained:
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
# 更改模型
model = Model(num_classes=num_classes).to(device) # create
# exclude = ['anchor'] if hyp.get('anchors') and not resume else [] # exclude keys
# # BN层的num_batches_tracked参数不导入
# exclude = ['num_batches_tracked']
exclude = []
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
# model.half()
model.load_state_dict(csd, strict=False) # load
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
else:
# 建立模型结构,并进行初始化,不使用预训练的检测模型
model = Model(num_classes=num_classes).to(device) # create
# Image size
# gs = max(int(model.stride.max()), 32) # grid size (max stride)
# S2ANet使用了P7,最大的下采样倍数为128
gs = max(max(model.stride), 128) # grid size (max stride)
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
# Optimizer
nominal_bs = opt.nominal_bs # nominal batch size
if nominal_bs == 0:
nominal_bs = batch_size # 不进行梯度的累积
accumulate = max(round(nominal_bs / batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= batch_size * accumulate / nominal_bs # scale weight_decay
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
g0, g1, g2 = [], [], [] # optimizer parameter groups
for v in model.modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
g2.append(v.bias)
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
g0.append(v.weight)
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
g1.append(v.weight)
# 是否采用参数分组,并分别确定学习率
if opt.params_groups:
if opt.optimizer == 'Adam':
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
elif opt.optimizer == 'AdamW':
optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
optimizer.add_param_group({'params': g2}) # add g2 (biases)
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
else:
optimizer = SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
del g0, g1, g2
# Scheduler
if opt.lr_scheduler == "linear":
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
elif opt.lr_scheduler == "cosine":
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
elif opt.lr_scheduler == "step":
lf = step_lr_scheduler(epochs) # step
else:
print("没有选择学习率衰减方案,报错退出")
exit()
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema = ModelEMA(model) if RANK in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
if opt.resume:
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# EMA
if ema and ckpt.get('ema'):
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']
# Epochs
start_epoch = ckpt['epoch'] + 1
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
if epochs < start_epoch:
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, csd
# DP mode
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
model = torch.nn.DataParallel(model)
# SyncBatchNorm
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
LOGGER.info('Using SyncBatchNorm()')
# Trainloader
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=LOCAL_RANK,
workers=workers, quad=opt.quad,
prefix=colorstr('train: '), shuffle=True)
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
nb = len(train_loader) # number of batches
assert mlc < num_classes, f'Label class {mlc} exceeds nc={num_classes} in {data}. Possible class labels are 0-{num_classes - 1}'
# Process 0
if RANK in [-1, 0]:
# 这里我们不进行方形的推理
val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
hyp=hyp, cache=None if noval else opt.cache, rect=opt.rect, rank=-1,
workers=workers,
prefix=colorstr('val: '))[0]
if not resume:
labels = np.concatenate(dataset.labels, 0)
# c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
# 画1024*1024图像尺寸上的标签分布
labels[:, [1,3,5,7]] *= imgsz
labels[:, [2,4,6,8]] *= imgsz
if plots:
# labels shape :[N, 9(cls_id, x1,y1, ... x4,y4(归一化值))]
plot_labels_rotate(labels, names, save_dir)
model.half().float() # pre-reduce anchor precision
callbacks.run('on_pretrain_routine_end')
# DDP mode
if cuda and RANK != -1:
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, find_unused_parameters=True)
# model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
model.nc = num_classes # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.names = names
# Start training
t0 = time.time()
# 最少要进行1000个迭代的warmup,按照S2ANet官方代码的描述,最少进行500个迭代
# nw = max(round(hyp['warmup_epochs'] * nb), hyp['warmup_iters']) # number of warmup iterations, max(3 epochs, 1k iterations)
nw = hyp['warmup_iters'] # number of warmup iterations
# nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
# warmup_ratio = hyp["warmup_ratio"]
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
map50s = np.zeros(num_classes) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=is_MAP)
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
# mloss知识用来显示的,因此没必要用torch.tensor类型,省点显存
# mloss = torch.zeros(4, device=device) # mean losses
mloss = np.zeros(4) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%10s' * (4+mloss.size)) % ('Epoch', 'gpu_mem', 'fam_cls', 'fam_reg', 'odm_cls', 'odm_reg', 'labels', 'img_size'))
if RANK in [-1, 0]:
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
for j, x in enumerate(optimizer.param_groups):
k = (1 - ni / nw) * (1 - 1.0/3)
x['lr'] = (1-k) * x['initial_lr'] * lf(epoch)
# Multi-scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward
with amp.autocast(enabled=is_MAP):
# 混合精度训练,要求输入图像和模型都是torch.float32类型
results = model(imgs, targets.to(device))
loss = results["loss"]
loss_items = results["loss_items"]
if RANK != -1:
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.
# Backward
# 对损失乘以一个scale因子,然后再进行反向传播计算梯度。乘以scale因子,可以避免float16梯度出现underflow的情况
scaler.scale(loss).backward()
# Optimize
if ni - last_opt_step >= accumulate:
if opt.grad_clip:
# print("进行梯度裁剪")
# 首先显式调用unscale梯度函数,后续的scaler.step(optimizer)就不会再进行unscale了
scaler.unscale_(optimizer)
# 进行梯度裁剪,注意,首先筛选出保存了梯度的可训练参数,然后再进行梯度裁剪
torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, model.parameters()),
max_norm=35, norm_type=2)
scaler.step(optimizer) # optimizer.step,梯度更新,会先对梯度进行unscale,再进行梯度更新
scaler.update() # 更新scale因子
optimizer.zero_grad()
if ema:
ema.update(model)
last_opt_step = ni
# Log
if RANK in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
# 打印一下显存占用、损失、目标个数、图像尺寸等等
pbar.set_description(('%10s' * 2 + '%10.4g' * (mloss.size+2)) % (
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
# 训练完成一个batch
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
if callbacks.stop_training:
return
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
# 判断是否采用了训练参数分组分别确定学习率的方法
if len(lr) == 1:
lr = [lr[0], 0, 0]
scheduler.step()
if RANK in [-1, 0]:
# mAP
callbacks.run('on_train_epoch_end', epoch=epoch)
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
final_epoch = epoch + 1 == epochs
# 10个epoch后,再进行验证,因为初始阶段的分类损失不够低,验证的时间特别长
if (not noval or final_epoch): # Calculate mAP
# results:(p, r, map50, fam_cls_loss, fam_reg_loss, odm_cls_loss, odm_reg_loss)
results, map50s = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=ema.ema,
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
is_mAP_split=opt.is_mAP_split
)
# Update best mAP50
fi = fitness_rotate(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5]
if fi > best_fitness:
best_fitness = fi
log_vals = list(mloss) + list(results) + lr
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
# Save model
if (not nosave) or final_epoch: # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'model': deepcopy(de_parallel(model)).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
'date': datetime.now().isoformat()}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
torch.save(ckpt, w / f'epoch{epoch}.pt')
del ckpt
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is best:
LOGGER.info(f'\nValidating {f}...')
results, _ = val.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=torch.load(f, map_location=device)['model'],
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
is_mAP_split=opt.is_mAP_split,
half = is_MAP,
) # val best model with plots
callbacks.run('on_train_end', last, best, plots, epoch, results)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
torch.cuda.empty_cache()
return results
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / '', help='initial weights path')
# parser.add_argument('--weights', type=str, default=ROOT / 'runs/train/exp232/weights/best.pt', help='initial weights path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.s2anet.yaml', help='hyperparameters path')
parser.add_argument('--data', type=str, default=ROOT / 'data/dota.yaml', help='dataset.yaml path')
parser.add_argument('--epochs', type=int, default=12)
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=1024, help='train, val image size (pixels)')
# 学习率衰减方案,只有三种,余弦、线性、阶段
parser.add_argument('--lr-scheduler', type=str, default="step", help='lr-scheduler')
# 梯度裁剪
parser.add_argument('--grad-clip', action='store_true', default=True, help='Gradient clipping')
# 通过梯度累积达到的名义batch-size,为0表示不进行梯度累积;大于0 时,会根据与batch-size的关系,确定累积几次进行一次反向传播
# parser.add_argument('--nominal-bs', type=int, default=64)
parser.add_argument('--nominal-bs', type=int, default=0)
# 是否对训练参数进行分组,不同的参数分组分别确定学习率
parser.add_argument('--params_groups', action='store_true', default=False)
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
# 是否以切图的方式计算mAP
parser.add_argument('--is_mAP_split', action='store_true', default=True)
# 是否使用混合精度训练,automatic mixed-precision training
parser.add_argument('--is_MAP', action='store_true', default=True)
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
# Weights & Biases arguments
parser.add_argument('--entity', default=None, help='W&B: Entity')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
def main(opt, callbacks=Callbacks()):
# Checks
if RANK in [-1, 0]:
print_args(FILE.stem, opt)
# print(f"RANK:{RANK}")
# Resume
if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
opt.weights, opt.resume = ckpt, True # reinstate
LOGGER.info(f'Resuming training from {ckpt}')
else:
opt.data, opt.hyp, opt.weights, opt.project = \
check_file(opt.data), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
torch.cuda.set_device(LOCAL_RANK)
device = torch.device('cuda', LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
# Train
train(opt.hyp, opt, device, callbacks)
if WORLD_SIZE > 1 and RANK == 0:
# 销毁进程组
LOGGER.info('Destroying process group... ')
dist.destroy_process_group()
if __name__ == "__main__":
opt = parse_opt()
main(opt)