-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_convlstm.py
154 lines (121 loc) · 5.4 KB
/
trainer_convlstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from datetime import datetime
import torch
import matplotlib.pyplot as plt
import os
import torch.optim as optim
# Utils
from utils import utils
import numpy as np
import random
import pdb
import torchvision
import torch.nn as nn
from tensorboardX import SummaryWriter
from torch.optim.lr_scheduler import StepLR
from optimization.validation_convlstm import validate
import sys
sys.path.append("../../")
# seeding only for debugging
# random.seed(0)
# torch.manual_seed(0)
# np.random.seed(0)
#
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
def trainer(args, train_loader, valid_loader, model,
device='cpu', needs_init=True):
args.experiment_dir = os.path.join('runs',
args.modeltype + '_' + args.trainset + datetime.now().strftime("_%Y_%m_%d_%H_%M_%S"))
# set viz dir
viz_dir = "{}/snapshots/".format(args.experiment_dir)
os.makedirs(viz_dir, exist_ok=True)
writer = SummaryWriter("{}".format(args.experiment_dir))
mse = nn.MSELoss()
prev_mse_epoch = np.inf
logging_step = 0
step = 0
bpd_valid = 0
optimizer = optim.Adam(model.parameters(), lr=args.lr, amsgrad=True)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=2 * 10 ** 5,
gamma=0.5)
state=None
color = 'inferno' if args.trainset == 'temp' else 'viridis'
model.to(device)
params = sum(x.numel() for x in model.parameters() if x.requires_grad)
print('Nr of Trainable Params {}: '.format(args.device), params)
if torch.cuda.device_count() > 1 and args.train:
print("Running on {} GPUs!".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.parallel = True
for epoch in range(args.epochs):
for batch_idx, item in enumerate(train_loader):
x = item[0].to(device)
# split time series into lags and prediction window
x_past, x_for = x[:,:, :2,...], x[:,:,2:,...]
# reshape into correct format [bsz, num_channels, seq_len, height, width]
# x_past = x_past.permute(0,2,1,3,4).contiguous().float().to(device)
# x_for = x_for.permute(0,2,1,3,4).contiguous().float().to(device)
model.train()
optimizer.zero_grad()
# We need to init the underlying module in the dataparallel object
# For ActNorm layers.
if needs_init and torch.cuda.device_count() > 1:
bsz_p_gpu = args.bsz // torch.cuda.device_count()
_, _ = model.module.forward(x_hr=y[:bsz_p_gpu],
xlr=x[:bsz_p_gpu],
logdet=0)
# pdb.set_trace()
out = model.forward(x_past)
mse_loss = mse(out, x_for)
writer.add_scalar("mse_loss", mse_loss.item(), step)
# Compute gradients
mse_loss.backward()
# Update model parameters using calculated gradients
optimizer.step()
scheduler.step()
step = step + 1
print("[{}] Epoch: {}, Train Step: {:01d}/{}, Bsz = {}, MSE Loss {:.3f}".format(
datetime.now().strftime("%Y-%m-%d %H:%M"),
epoch, step,
args.max_steps,
args.bsz,
mse_loss))
if step % args.log_interval == 0:
with torch.no_grad():
if hasattr(model, "module"):
model_without_dataparallel = model.module
else:
model_without_dataparallel = model
model.eval()
mse_valid = validate(model_without_dataparallel,
valid_loader,
args.experiment_dir,
"{}".format(step),
args,
device=device)
writer.add_scalar("mse_valid", mse_valid.mean().item(),
logging_step)
# save checkpoint only when validation nll lower than previous model
print("Saving Checkpoint !")
PATH = args.experiment_dir + '/model_checkpoints/'
os.makedirs(PATH, exist_ok=True)
torch.save({'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': mse_valid.mean()}, PATH+ f"model_epoch_{epoch}_step_{step}.tar")
prev_mse_epoch = mse_valid
logging_step += 1
if step == args.max_steps:
break
if step == args.max_steps:
print("Done Training for {} mini-batch update steps!".format(args.max_steps)
)
if hasattr(model, "module"):
model_without_dataparallel = model.module
else:
model_without_dataparallel = model
utils.save_model(model_without_dataparallel,
epoch, optimizer, args, time=True)
print("Saved trained model :)")
break