-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidation_convlstm.py
192 lines (155 loc) · 6.25 KB
/
validation_convlstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import torch
import random
import PIL
import os
import torchvision
from torchvision import transforms
import torch.nn as nn
import sys
sys.path.append("../../")
from os.path import exists, join
import matplotlib.pyplot as plt
import pdb
def validate(model, val_loader, exp_name, logstep, args, device):
# random.seed(0)
# torch.manual_seed(0)
# np.random.seed(0)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
state = None
loss = nn.MSELoss()
loss_list = []
model.eval()
color = 'inferno' if args.trainset == 'temp' else 'viridis'
with torch.no_grad():
for batch_idx, item in enumerate(val_loader):
x = item[0]
# split time series into context and prediction window
x_past, x_for = x[:,:, :2,...].cuda(), x[:,:,2:,...].cuda()
out = model.forward(x_past)
l1_loss = loss(out, x_for)
# Generative loss
loss_list.append(l1_loss.mean().detach().cpu().numpy())
print(batch_idx)
if batch_idx == 2:
break
# ---------------------- Evaluate Predictions---------------------- #
# visualize prediction
prediction = model.forward(x_past)
savedir = "{}/snapshots/validation/predicted_frames_{}/".format(
exp_name, args.trainset)
os.makedirs(savedir, exist_ok=True)
grid_ground_truth = torchvision.utils.make_grid(x_for.squeeze(1).cpu(), nrow=3)
plt.figure()
plt.imshow(grid_ground_truth.permute(1, 2, 0)[:,:,0].contiguous(), cmap=color)
plt.axis('off')
plt.title("Frame at t+1")
plt.savefig(savedir + "x_t+1_logstep_{}.png".format(logstep), dpi=300)
# visualize past frames the prediction is based on (context)
grid_past = torchvision.utils.make_grid(x_past[:, -1, :, :].cpu(), nrow=3)
plt.figure()
plt.imshow(grid_past.permute(1, 2, 0)[:,:,0].contiguous(), cmap=color)
plt.axis('off')
plt.title("Frame at t")
plt.savefig(savedir + "_x_t_logstep_{}.png".format(logstep), dpi=300)
grid_pred = torchvision.utils.make_grid(prediction[:,0,:,:].cpu(), nrow=3)
plt.figure()
plt.imshow(grid_pred.permute(1, 2, 0)[:,:,0].contiguous(), cmap=color)
plt.axis('off')
plt.title("Prediction at t+1")
plt.savefig(savedir + "prediction_logstep_{}.png".format(logstep), dpi=300)
print("Average Validation MSE-Loss:", np.mean(loss_list))
return np.mean(loss_list)
def mse(arg):
"""
Implements Mean Squared Error.
Args:
prediction
ground_truth
"""
pass
def nlpd(arg):
"""
Implements negative log predictive density.
"""
pass
def metrics_eval(model, test_loader, logging_step, writer, args):
print("Metric evaluation on {}...".format(args.testset))
# storing metrics
# ssim_yhat = []
ssim_mu0 = []
ssim_mu05 = []
ssim_mu08 = []
ssim_mu1 = []
# psnr_yhat = []
psnr_0 = []
psnr_05 = []
psnr_08 = []
psnr_1 = []
model.eval()
with torch.no_grad():
for batch_idx, item in enumerate(test_loader):
y = item[0]
x = item[1]
orig_shape = item[2]
w, h = orig_shape
# Push tensors to GPU
y = y.to("cuda")
x = x.to("cuda")
if args.modeltype == "flow":
mu0 = model._sample(x=x, eps=0)
mu05 = model._sample(x=x, eps=0.5)
mu08 = model._sample(x=x, eps=0.8)
mu1 = model._sample(x=x, eps=1)
ssim_mu0.append(metrics.ssim(y, mu0, orig_shape))
ssim_mu05.append(metrics.ssim(y, mu05, orig_shape))
ssim_mu08.append(metrics.ssim(y, mu08, orig_shape))
ssim_mu1.append(metrics.ssim(y, mu1, orig_shape))
psnr_0.append(metrics.psnr(y, mu0, orig_shape))
psnr_05.append(metrics.psnr(y, mu05, orig_shape))
psnr_08.append(metrics.psnr(y, mu08, orig_shape))
psnr_1.append(metrics.psnr(y, mu1, orig_shape))
elif args.modeltype == "dlogistic":
# sample from model
sample, means = model._sample(x=x)
ssim_mu0.append(metrics.ssim(y, means, orig_shape))
psnr_0.append(metrics.psnr(y, means, orig_shape))
# ---------------------- Visualize Samples-------------
if args.visual:
# only for testing, delete snippet later
torchvision.utils.save_image(
x[:, :, :h, :w], "x.png", nrow=1, padding=2, normalize=False
)
torchvision.utils.save_image(
y[:, :, :h, :w], "y.png", nrow=1, padding=2, normalize=False
)
torchvision.utils.save_image(
means[:, :, :h, :w],
"dlog_mu.png",
nrow=1,
padding=2,
normalize=False,
)
torchvision.utils.save_image(
sample[:, :, :h, :w],
"dlog_sample.png",
nrow=1,
padding=2,
normalize=False,
)
writer.add_scalar("ssim_std0", np.mean(ssim_mu0), logging_step)
writer.add_scalar("psnr0", np.mean(psnr_0), logging_step)
if args.modeltype == "flow":
writer.add_scalar("ssim_std05", np.mean(ssim_mu05), logging_step)
writer.add_scalar("ssim_std08", np.mean(ssim_mu08), logging_step)
writer.add_scalar("ssim_std1", np.mean(ssim_mu1), logging_step)
writer.add_scalar("psnr05", np.mean(psnr_05), logging_step)
writer.add_scalar("psnr08", np.mean(psnr_08), logging_step)
writer.add_scalar("psnr1", np.mean(psnr_1), logging_step)
print("PSNR (GT, mean):", np.mean(psnr_0))
print("SSIM (GT, mean):", np.mean(ssim_mu0))
return writer
# if __name__ == "__main__":
# validate(model, val_loader, exp_name, logstep, args)
# evaluate_metrics(model, dloader)