-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
70 lines (54 loc) · 2.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gymnasium as gym
import Environments.findTargetEnv
from stable_baselines3 import PPO, DQN
from stable_baselines3.common.evaluation import evaluate_policy
# Press the green button in the gutter to run the script.
def demo_Lunar_Lander_random_action():
env = gym.make("LunarLander-v2", render_mode = "human")
observation, info = env.reset()
for _ in range(1000):
action = env.action_space.sample() # random action
observation, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:
observation, info = env.reset()
env.close()
def learn_lunar_lander_PPO():
env = gym.make("LunarLander-v2", render_mode = "rgb_array")
model = PPO("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=1e6, progress_bar=True)
model.save("LunarLanderModel_1e6")
#evaluate
mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10)
def demo_trainaed_model(model_path:str):
env = gym.make("LunarLander-v2", render_mode="rgb_array")
model = PPO.load(model_path, env)
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(10000):
action, _states = model.predict(obs, deterministic=True)
obs, rewards, done, info = vec_env.step(action)
vec_env.render("human")
if __name__ == '__main__':
# create env
env = gym.make("FindTargetEnv-v0", render_mode="rgb_array", size=5)
# create model
ALGO = PPO
model = ALGO("MlpPolicy", env=env, verbose=1)
# train model
model.learn(total_timesteps=5e5, progress_bar=True)
# save model
model_path = "FindTarget_5e4"
model.save(model_path)
# demo model
env = gym.make("FindTargetEnv-v0", render_mode="human", size=5)
model = ALGO.load(model_path, env)
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(10000):
action, _states = model.predict(obs, deterministic=True)
obs, rewards, done, info = vec_env.step(action)
vec_env.render("human")
if done:
obs = vec_env.reset()
vec_env.close()
#pass