-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain_word2vec.py
65 lines (54 loc) · 1.99 KB
/
train_word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#encoding:utf-8
import logging
import time
import codecs
import sys
import re
import jieba
from gensim.models import word2vec
from text_model import TextConfig
re_han= re.compile(u"([\u4E00-\u9FD5a-zA-Z0-9+#&\._%]+)") # the method of cutting text by punctuation
class Get_Sentences(object):
'''
Args:
filenames: a list of train_filename,test_filename,val_filename
Yield:
word:a list of word cut by jieba
'''
def __init__(self,filenames):
self.filenames= filenames
def __iter__(self):
for filename in self.filenames:
with codecs.open(filename, 'r', encoding='utf-8') as f:
for _,line in enumerate(f):
try:
line=line.strip()
line=line.split('\t')
assert len(line)==2
blocks=re_han.split(line[1])
word=[]
for blk in blocks:
if re_han.match(blk):
word.extend(jieba.lcut(blk))
yield word
except:
pass
def train_word2vec(filenames):
'''
use word2vec train word vector
argv:
filenames: a list of train_filename,test_filename,val_filename
return:
save word vector to config.vector_word_filename
'''
t1 = time.time()
sentences = Get_Sentences(filenames)
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
model = word2vec.Word2Vec(sentences, size=100, window=5, min_count=1, workers=6)
model.wv.save_word2vec_format(config.vector_word_filename, binary=False)
print('-------------------------------------------')
print("Training word2vec model cost %.3f seconds...\n" % (time.time() - t1))
if __name__ == '__main__':
config=TextConfig()
filenames=[config.train_filename,config.test_filename,config.val_filename]
train_word2vec(filenames)