forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsem_fpn.yml
95 lines (95 loc) · 2.67 KB
/
sem_fpn.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
Name: sem_fpn
Models:
- Config: configs/sem_fpn/fpn_r50_512x1024_80k_cityscapes.py
In Collection: sem_fpn
Metadata:
backbone: R-50
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 73.86
lr schd: 80000
memory (GB): 2.8
Name: fpn_r50_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 74.52
mIoU(ms+flip): 76.08
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth
- Config: configs/sem_fpn/fpn_r101_512x1024_80k_cityscapes.py
In Collection: sem_fpn
Metadata:
backbone: R-101
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 97.18
lr schd: 80000
memory (GB): 3.9
Name: fpn_r101_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 75.8
mIoU(ms+flip): 77.4
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth
- Config: configs/sem_fpn/fpn_r50_512x512_160k_ade20k.py
In Collection: sem_fpn
Metadata:
backbone: R-50
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 17.93
lr schd: 160000
memory (GB): 4.9
Name: fpn_r50_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 37.49
mIoU(ms+flip): 39.09
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth
- Config: configs/sem_fpn/fpn_r101_512x512_160k_ade20k.py
In Collection: sem_fpn
Metadata:
backbone: R-101
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 24.64
lr schd: 160000
memory (GB): 5.9
Name: fpn_r101_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 39.35
mIoU(ms+flip): 40.72
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth