-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_mp.py
60 lines (50 loc) · 2.01 KB
/
benchmark_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import os
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import tqdm
import random
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
parser = argparse.ArgumentParser(description='ImageNet data loading benchmark')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
class Imagenet(datasets.ImageFolder):
def __init__(self, dir):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
super().__init__(dir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
# def __len__(self):
# # Limit to first 10%
# return round(super().__len__() / 10)
def main():
args = parser.parse_args()
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = Imagenet(traindir)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
for sample, target in tqdm.tqdm(train_loader):
assert sample.is_pinned()
del sample
del target
if __name__ == "__main__":
torch.manual_seed(1)
random.seed(1)
main()