-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
137 lines (111 loc) · 5.63 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
import math
class TransformerEmbedding(nn.Module):
def __init__(self, vocab_size, d_model, max_len, dropout=0.1):
super(TransformerEmbedding, self).__init__()
self.token_embedding = nn.Embedding(vocab_size, d_model)
self.position_encoding = self._generate_positional_encoding(d_model, max_len)
self.dropout = nn.Dropout(dropout)
self.max_len = max_len # Store max_len as instance variable
def _generate_positional_encoding(self, d_model, max_len):
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
return pe
def forward(self, x):
seq_len = x.size(1)
if seq_len > self.max_len: # Truncate if sequence length exceeds max_len
x = x[:, :self.max_len]
seq_len = self.max_len
token_embeddings = self.token_embedding(x)
position_encodings = self.position_encoding[:, :seq_len, :].to(x.device)
embeddings = token_embeddings + position_encodings
return self.dropout(embeddings)
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.attention_weights = None
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
Q = self.q_linear(query) # (batch_size, seq_len, d_model)
K = self.k_linear(key) # (batch_size, seq_len, d_model)
V = self.v_linear(value) # (batch_size, seq_len, d_model)
# 멀티 헤드로 나누기: (batch_size, seq_len, num_heads, head_dim)
Q = self._split_heads(Q, batch_size)
K = self._split_heads(K, batch_size)
V = self._split_heads(V, batch_size)
attention_output, attention_weights = self._scaled_dot_product_attention(Q, K, V, mask)
concat_attention = self._combine_heads(attention_output, batch_size)
output = self.out_linear(concat_attention) # (batch_size, seq_len, d_model)
self.attention_weights = attention_weights
return output, attention_weights
def _scaled_dot_product_attention(self, Q, K, V, mask):
d_k = Q.size(-1) # head_dim
scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32)) # (batch_size, num_heads, seq_len, seq_len)
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attention_weights = torch.softmax(scores, dim=-1) # (batch_size, num_heads, seq_len, seq_len)
attention_weights = self.dropout(attention_weights)
output = torch.matmul(attention_weights, V) # (batch_size, num_heads, seq_len, head_dim)
return output, attention_weights
def _split_heads(self, x, batch_size):
return x.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # (batch_size, num_heads, seq_len, head_dim)
def _combine_heads(self, x, batch_size):
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) # (batch_size, seq_len, d_model)
return x
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.ReLU(),
nn.Linear(d_model * 4, d_model)
)
self.norm2 = nn.LayerNorm(d_model)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x, mask=None):
x = x + self.dropout1(self.self_attn(x, x, x, mask)[0])
x = self.norm1(x)
x = x + self.dropout2(self.feed_forward(x))
x = self.norm2(x)
return x
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.norm2 = nn.LayerNorm(d_model)
self.dropout2 = nn.Dropout(dropout)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.ReLU(),
nn.Linear(d_model * 4, d_model)
)
self.norm3 = nn.LayerNorm(d_model)
self.dropout3 = nn.Dropout(dropout)
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = x + self.dropout1(self.self_attn(x, x, x, tgt_mask)[0])
x = self.norm1(x)
x = x + self.dropout2(self.cross_attn(x, encoder_output, encoder_output, src_mask)[0])
x = self.norm2(x)
x = x + self.dropout3(self.feed_forward(x))
x = self.norm3(x)
return x