-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdetector.py
56 lines (46 loc) · 2.1 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
import numpy as np
import cv2
from utils import label_map_util
from utils import visualization_utils as vis_util
PATH_TO_CKPT = 'frozen_inference_graph.pb'
PATH_TO_LABELS = 'label_map.pbtxt'
NUM_CLASSES = 4
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
DETECTION_GRAPH = None
SESS = None
def setup():
global SESS, DETECTION_GRAPH
DETECTION_GRAPH = tf.Graph()
with DETECTION_GRAPH.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
SESS = tf.Session(graph=DETECTION_GRAPH, config=config)
def detect(image):
image_np = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = DETECTION_GRAPH.get_tensor_by_name('image_tensor:0')
boxes = DETECTION_GRAPH.get_tensor_by_name('detection_boxes:0')
scores = DETECTION_GRAPH.get_tensor_by_name('detection_scores:0')
classes = DETECTION_GRAPH.get_tensor_by_name('detection_classes:0')
num_detections = DETECTION_GRAPH.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = SESS.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return (image_np, {'boxes': boxes[0], 'scores': scores[0], 'classes': classes[0]})