-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNeuralEvol.py
281 lines (237 loc) · 9.97 KB
/
NeuralEvol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
## Algorithme d'évolution de réseaux de neurones
## Ces réseaux sont représentés sous la forme d'un graphe orienté
import matplotlib.pyplot as plt
import numpy as np
import copy
import networkx as nx
from math import *
##Hyperparamètres
ALPHA = 0.1
#Mutation
WEIGHTMUTATION = 0.5 #Correcteur de mutabilité des poids p/r à la mutabilité standard du réseau
EDGEMUTATION = 0.025 #Correcteur de mutabilité pour l'apparition d'un neurone
VERTEXMUTATION = 0.1
EPSILON = 0.0001 #Mutationrate minimal
RAFRAICHISSEMENT = 0.5 #Probabilité de rajouter des réseaux vierges lors de l'écrêmage
ITERATIONS = 5
def getLetter(index):
assert 0 <= index
return chr(index + 65)
class Activation:
def __init__(self, function):
self.function = function
def __call__(self, x):
try:
return self.function(x)
except:
print('OVERFLOW')
return self.function(0)
leakyReLU = Activation(lambda x : x if x >= 0 else ALPHA * x)
Sigmoid = Activation(lambda x : 1 / (1 + exp(-x)))
fonctionRandom = lambda : np.random.normal()
class Dataloader:
def __init__(self, DATAIN, EXPECT):
assert len(DATAIN) == len(EXPECT), "Pb de correspondance entre DATAIN et EXPECT"
self.datain = DATAIN
self.expect = EXPECT
self.longueur = len(DATAIN)
def __getitem__(self, index):
assert index < self.longueur, "Dépassement d'indice"
return (self.datain[index], self.expect[index])
class Vertex:
def __init__(self, number, activation, vertexType = 'inner'):
self.activation = activation
self.number = number
self.dataIn = None #Besoin de différencier les deux pour le cas de récurrences,
self.dataOut = None #permettant de bien faire avancer le réseau par paliers
self.bias = None
self.weights = []
self.voisins = [] # Il s'agit des voisins en amont!
self.bias = 0
self.vertexType = vertexType
def __repr__(self):
return str(self.number)
def feedDataIntern(self):
self.dataOut = self.dataIn
class Network:
def __init__(self, vertexNumber, inputNumber, outputNumber, activationList):
self.mutationRate = np.random.random()
assert inputNumber + outputNumber <= vertexNumber, 'Probleme de nombre de neurones'
assert vertexNumber == len(activationList), 'Probleme des activations'
self.vertexNumber = vertexNumber
self.inputNumber = inputNumber
self.outputNumber = outputNumber
self.inputvertex = [i for i in range(inputNumber)]
self.outputvertex = [i for i in range(inputNumber, inputNumber + outputNumber)]
self.vertex = []
for i in range(inputNumber):
self.vertex.append(Vertex(i, activationList[i], 'input'))
for i in range(inputNumber, inputNumber + outputNumber):
self.vertex.append(Vertex(i, activationList[i], 'output'))
for i in range(inputNumber + outputNumber, vertexNumber):
self.vertex.append(Vertex(i, activationList[i]))
self.fitness = 0
def initRandom(self, functionData, functionWeights, functionBias):
#Remplir les neurones avec les fonctions (éventuellement aléatoires)
for neurone in self.vertex:
longueur = len(neurone.voisins)
for i in range(longueur):
neurone.weights[i] = functionWeights()
neurone.dataOut = functionData()
neurone.bias = functionBias()
def feedInternal(self):
#Fait passer les valeurs In à Out sur tous les neurones
for neurone in self.vertex:
neurone.feedDataIntern()
def feedForward(self):
for neurone in self.vertex:
somme = neurone.bias
for i in range(len(neurone.voisins)):
somme += neurone.weights[i] * self.vertex[neurone.voisins[i]].dataOut
neurone.dataIn = neurone.activation(somme)
self.feedInternal()
def feedIn(self, values):
assert len(values) == self.inputNumber, 'Probleme de concordance des données d entrée.'
for i in range(len(values)):
self.vertex[self.inputvertex[i]].dataIn = values[i]
self.vertex[self.inputvertex[i]].dataOut = values[i]
#self.feedInternal()
def feedOut(self): #Donner les valeurs des neurones de sortie
values = []
for i in range(self.outputNumber):
values.append(self.vertex[self.outputvertex[i]].dataOut)
return values
def addEdge(self, i, j, weight = None): #Ajouter une arête au réseau
assert not i in self.vertex[j].voisins, 'Arête déjà présente.'
self.vertex[j].voisins.append(i)
self.vertex[j].weights.append(weight)
def mutate(self):
#Mutation des poids
for V in self.vertex:
for i in range(len(V.weights)):
if np.random.random() <= self.mutationRate * WEIGHTMUTATION:
V.weights[i] += np.random.normal(0, WEIGHTMUTATION)
#Mutation des neurones
while np.random.random() <= self.mutationRate * EDGEMUTATION:
self.addRandomEdge()
while np.random.random() <= self.mutationRate * VERTEXMUTATION:
self.addRandomEdgeWithoutVertex()
#Mutation du taux de mutation
if np.random.random() <= self.mutationRate:
self.mutationRate = max(min(EPSILON, self.mutationRate + np.random.normal(0, 0.1)), 1 - EPSILON)
def addRandomEdgeWithoutVertex(self):
(i, j) = np.random.randint(0, self.vertexNumber, 2)
if i not in self.vertex[j].voisins and i != j and j not in range(self.inputNumber, self.inputNumber + self.outputNumber):
self.vertex[i].voisins.append(i)
self.vertex[i].weights.append(np.random.normal())
def addRandomEdge(self):
(i, j) = np.random.randint(0, self.vertexNumber, 2)
if i in [self.inputNumber, self.inputNumber + self.outputNumber]:
return 0
if i in self.vertex[j].voisins:
indice = self.vertexNumber
E = Vertex(indice, leakyReLU if np.random.random() < 0.5 else Sigmoid, vertexType = 'inner')
E.voisins = [i]
E.dataOut = 0
E.weights = [np.random.normal()]
self.vertex.append(E)
self.vertexNumber += 1
self.vertex[j].voisins = [indice if x == i else x for x in self.vertex[j].voisins]
else:
indice = self.vertexNumber
E = Vertex(indice, leakyReLU if np.random.random() < 0.5 else Sigmoid, vertexType = 'inner')
E.voisins = [i]
E.dataOut = 0
E.weights = [np.random.normal()]
self.vertex.append(E)
self.vertexNumber += 1
self.vertex[j].voisins.append(indice)
self.vertex[j].weights.append(np.random.normal())
def evaluate(self, dataloader):
somme = 0
sommepartielle = 0
for _ in range(ITERATIONS):
for i in range(dataloader.longueur):
inD, outD = dataloader[np.random.randint(0, dataloader.longueur)]
self.feedIn(inD)
self.feedForward()
res = self.feedOut()
for j in range(len(res)):
sommepartielle += (res[j] - outD[j]) ** 2
somme += sommepartielle
self.fitness = somme / dataloader.longueur
def test(self, datain):
self.feedIn(datain)
self.feedForward()
return self.feedOut()
class Pool:
def __init__(self, networkNumber, dataloader, *args):
self.dataloader = dataloader
self.dataSize = dataloader.longueur
self.networkNumber = networkNumber
self.population = [Network(*args) for i in range(networkNumber)]
for N in self.population:
N.initRandom(fonctionRandom, fonctionRandom, fonctionRandom)
def initRandom(self, *args):
for N in self.population:
try:
N.initRandom(args)
except:
print("Problème d'initialisation : fonctions d'init invalides")
def mutateNetwork(self):
for N in self.population:
N.mutate()
def evaluate(self):
for N in self.population:
N.evaluate(dataloader)
self.population.sort(key = lambda object : object.fitness)
def separate(self, keep):
keptPopulation = self.population[0:keep]
for i in range(keep, self.networkNumber):
indice = int(min(abs(np.random.normal()), 1) * (keep - 1))
N = copy.deepcopy(keptPopulation[indice])
N.mutate()
keptPopulation.append(N)
self.population = keptPopulation
def train(self, epochNumber, keep):
assert keep <= self.networkNumber
for i in range(epochNumber):
self.evaluate()
self.separate(keep)
print(str(i) + ' ' + str(self.population[0].fitness))
def renormalize(self):
for N in self.population:
N.initRandom(fonctionRandom, fonctionRandom, fonctionRandom)
DATAIN = [[0, 0], [1, 0], [0, 1], [1, 1]]
EXPECT = [[0], [1], [1], [0]]
dataloader = Dataloader(DATAIN, EXPECT)
"""
network = Network(4, 1, 1, [leakyReLU, leakyReLU, leakyReLU, leakyReLU])
network.addEdge(0, 2)
network.addEdge(2, 3)
network.addEdge(3, 1)
network.addEdge(2, 2)
network.addEdge(0, 0)
network.initRandom(fonctionRandom, fonctionRandom, fonctionRandom)
for i in range(10):
network.feedIn([1])
network.feedForward()
print(network.feedOut())
#print(network.vertex[3].dataOut)
"""
P = Pool(250, dataloader, 3, 2, 1, [leakyReLU, leakyReLU, leakyReLU])
def plotBest(i = 0):
G = nx.DiGraph()
P.evaluate()
N = P.population[i]
number = N.vertexNumber
for i in range(number):
G.add_node(getLetter(i))
for i in range(number):
voisins = N.vertex[i].voisins
weights = N.vertex[i].weights
for j in range(len(voisins)):
G.add_edge(getLetter(voisins[j]), getLetter(i), weights = weights[j])
#Dessin:
nx.draw(G, with_labels = True)
plt.show()