-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainCheckerboard.m
93 lines (85 loc) · 3.11 KB
/
trainCheckerboard.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
%% 初步训练一个检测棋盘格点的目标检测器
% 2023.5.29 fasterRCNN检测器至少50个epoch以上,才有效果
load data/verifyCheckerBoard.mat
[imds,blds] = objectDetectorTrainingData(gTruth);
ds = combine(imds,blds);
inputSize = [224,224,3];% derive from yolov4 official example
trainingDataForEstimation = transform(ds,@(data)preprocessData(data,inputSize));% TransformedDatastore type object
% preview data
data = read(trainingDataForEstimation);
demoImage = insertObjectAnnotation(data{1},"Rectangle",data{2},"checkerboard");
figure;imshow(demoImage);
reset(trainingDataForEstimation);
useACF = false;
%% train ACF detector
if useACF
detector = trainACFObjectDetector(trainingDataForEstimation,NegativeSamplesFactor=2);
else
network = 'resnet18';
featureLayer = 'res4b_relu';
numClasses = 1;
numAnchors = 2;
anchorBoxes = estimateAnchorBoxes(trainingDataForEstimation,numAnchors);
load data/resnet18.mat
% anchorBoxes = round(anchorBoxes.*inputSize(1:2)./size(readimage(imds,1),[1,2]));
loadWeight = false;
if loadWeight
load data/fasterRcnnDetector.mat
else
lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes, ...
resnet18,featureLayer);
end
options = trainingOptions('sgdm', ...
'Shuffle','every-epoch',...
'MiniBatchSize', 8, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 80, ...
'VerboseFrequency', 5, ...
'ExecutionEnvironment','gpu',...
'CheckpointPath', "./");
if loadWeight
fasterRcnnDetector = trainFasterRCNNObjectDetector(trainingDataForEstimation, fasterRcnnDetector, options, ...
'NegativeOverlapRange',[0 0.6], ...
'PositiveOverlapRange',[0.75 1]);
else
fasterRcnnDetector = trainFasterRCNNObjectDetector(trainingDataForEstimation, lgraph, options, ...
'NegativeOverlapRange',[0 0.6], ...
'PositiveOverlapRange',[0.75 1]);
end
end
%%
load data/fasterRcnnDetector.mat
imdsTest = imageDatastore("/opt_disk2/rd22946/AllDataAndModels/from_wangzhi/三角测距/三角标定图片",IncludeSubfolders=true,....
FileExtensions=".bmp");
imdsTest = shuffle(imdsTest);
imdsReSz = transform(imdsTest,@(x)im2single(imresize(x,inputSize(1:2))));
for i = 1:length(imdsTest.Files)
img = read(imdsReSz);
if useACF
[bboxes,scores] = detect(detector,img);
else
[bboxes, scores, labels] = detect(fasterRcnnDetector,img);
end
if ~isempty(bboxes)
[score,idx] = maxk(scores,1);
bbox = bboxes(idx,:);
annotation = sprintf('Confidence = %.1f',score);
img = insertObjectAnnotation(img,'rectangle',bbox,annotation);
end
figure
imshow(img)
end
function data = preprocessData(data,targetSize)
for num = 1:size(data,1)
I = data{num,1};
imgSize = size(I);
bboxes = data{num,2};
I = im2single(imresize(I,targetSize(1:2)));
scale = targetSize(1:2)./imgSize(1:2);
bboxes = bboxresize(bboxes,scale);
data(num,1:2) = {I,bboxes};
end
end
function out = preprocessImage(inImage,targetSize)
out = im2single(imresize(inImage,targetSize(1:2)));
end