-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_extractor.py
136 lines (112 loc) · 4.31 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
import torch
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.model = models.resnet101(pretrained=True)
self.input_size = 224
delattr(self.model, 'fc')
delattr(self.model, 'avgpool')
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
return x
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
self.model = models.alexnet(pretrained=True)
self.input_size = 224
def forward(self, x):
x = self.model.features(x)
return x
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
# self.model = models.vgg16(pretrained=True)
self.model = models.vgg16(pretrained=True).features
self.model = torch.nn.Sequential(*list(self.model.children())[:-1])
self.input_size = 224
def forward(self, x):
x = self.model(x)
# x = self.model.features(x)
return x
class DenseNet(nn.Module):
def __init__(self):
super(DenseNet, self).__init__()
self.model = models.densenet201(pretrained=True)
self.input = 224
def forward(self, x):
x = self.model.features(x)
x = F.relu(x, inplace=True)
return x
class Inception(nn.Module):
def __init__(self):
super(Inception, self).__init__()
self.model = models.inception_v3(pretrained=True)
self.input_size = 299
def forward(self, x):
if self.model.transform_input:
'''
x = x.clone()
x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
'''
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
x = self.model.Conv2d_1a_3x3(x)
x = self.model.Conv2d_2a_3x3(x)
x = self.model.Conv2d_2b_3x3(x)
x = F.max_pool2d(x, kernel_size=3, stride=2)
x = self.model.Conv2d_3b_1x1(x)
x = self.model.Conv2d_4a_3x3(x)
x = F.max_pool2d(x, kernel_size=3, stride=2)
x = self.model.Mixed_5b(x)
x = self.model.Mixed_5c(x)
x = self.model.Mixed_5d(x)
x = self.model.Mixed_6a(x)
x = self.model.Mixed_6b(x)
x = self.model.Mixed_6c(x)
x = self.model.Mixed_6d(x)
x = self.model.Mixed_6e(x)
x = self.model.Mixed_7a(x)
x = self.model.Mixed_7b(x)
x = self.model.Mixed_7c(x)
return x
# Conv1 features are not returned
class VGG_all_conv_features(nn.Module):
def __init__(self):
super(VGG_all_conv_features, self).__init__()
# default ceil_mode for MaxPool2d is False, not sure if I shoulde chage it
# to True
vgg_pretrained = models.vgg16(pretrained=True)
# add -1 to the index to remove the pooling layer
self.block1 = nn.Sequential(*list(vgg_pretrained.features.children())[:5-1])
self.block2 = nn.Sequential(*list(vgg_pretrained.features.children())[5:10-1])
self.block3 = nn.Sequential(*list(vgg_pretrained.features.children())[10:17-1])
self.block4 = nn.Sequential(*list(vgg_pretrained.features.children())[17:24-1])
self.block5 = nn.Sequential(*list(vgg_pretrained.features.children())[24:-1])
self.pooling = nn.MaxPool2d(kernel_size=2, stride=2)
def get_feature_dims(self):
return (128, 256, 512, 512)
def forward(self, x):
x1 = self.block1(x)
x1_ = self.pooling(x1)
x2 = self.block2(x1_)
x2_ = self.pooling(x2)
x3 = self.block3(x2_)
x3_ = self.pooling(x3)
x4 = self.block4(x3_)
x4_ = self.pooling(x4)
x5 = self.block5(x4_)
return x2, x3, x4, x5