-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathV2_pipelines.py
434 lines (381 loc) · 18 KB
/
V2_pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import sys
argv = sys.argv
file_path = argv[1]
string_classif = argv[2]
from sklearn.decomposition import KernelPCA
from sklearn.preprocessing import (StandardScaler,MinMaxScaler,RobustScaler,MaxAbsScaler,Normalizer,PowerTransformer,QuantileTransformer)
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import KFold
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.decomposition import PCA, FastICA, TruncatedSVD
from sklearn.feature_selection import SelectPercentile, GenericUnivariateSelect
from sklearn.pipeline import make_pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.svm import LinearSVC
from sklearn.kernel_approximation import Nystroem, RBFSampler
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.cluster import FeatureAgglomeration
from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier, HistGradientBoostingClassifier)
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import (BernoulliNB, GaussianNB, MultinomialNB)
from sklearn.linear_model import (LogisticRegression, SGDClassifier, PassiveAggressiveClassifier)
from sklearn.svm import SVC
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
import pandas as pd
import logging
import os
import numpy as np
import time
import logging
from datetime import datetime
if str(string_classif) == 'RandomForestClassifier':
classificador = RandomForestClassifier(random_state=0)
elif str(string_classif) == 'AdaBoostClassifier':
classificador = AdaBoostClassifier(random_state=0)
elif str(string_classif) == 'BernoulliNB':
classificador = BernoulliNB()
elif str(string_classif) == 'DecisionTreeClassifier':
classificador = DecisionTreeClassifier(random_state=0)
elif str(string_classif) == 'ExtraTreesClassifier':
classificador = ExtraTreesClassifier(random_state=0)
elif str(string_classif) == 'GaussianNB':
classificador = GaussianNB()
elif str(string_classif) == 'HistGradientBoostingClassifier':
classificador = HistGradientBoostingClassifier(random_state=0)
elif str(string_classif) == 'KNeighborsClassifier':
classificador = KNeighborsClassifier()
elif str(string_classif) == 'LinearDiscriminantAnalysis':
classificador = LinearDiscriminantAnalysis()
elif str(string_classif) == 'LinearSVC':
classificador = LinearSVC(random_state=0)
elif str(string_classif) == 'SVC':
classificador = SVC(random_state=0)
elif str(string_classif) == 'MLPClassifier':
classificador = MLPClassifier(random_state=0)
elif str(string_classif) == 'MultinomialNB':
classificador = MultinomialNB()
elif str(string_classif) == 'PassiveAggressiveClassifier':
classificador = PassiveAggressiveClassifier(random_state=0)
elif str(string_classif) == 'QuadraticDiscriminantAnalysis':
classificador = QuadraticDiscriminantAnalysis()
elif str(string_classif) == 'SGDClassifier':
classificador = SGDClassifier(random_state=0)
# classificador = RandomForestClassifier()
#classificador = [
# RandomForestClassifier(),
# AdaBoostClassifier(),
# BernoulliNB(),
# DecisionTreeClassifier(),
# ExtraTreesClassifier(),
# GaussianNB(),
# HistGradientBoostingClassifier(),
# KNeighborsClassifier(),
# LinearDiscriminantAnalysis(),
# LinearSVC(),
# SVC(),
# MLPClassifier(),
# MultinomialNB(),
# PassiveAggressiveClassifier(),
# QuadraticDiscriminantAnalysis(),
# SGDClassifier()
#]
log_directory = 'logs'
if not os.path.exists(log_directory):
os.makedirs(log_directory)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
log_filename = os.path.join(log_directory, f"log_{current_time}.log")
file_handler = logging.FileHandler(log_filename)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
def preprocess(X_train, X_test, y_train, imputer_strategy, categorical_strategy, scaler, feature_selection):
logger.info("")
using_no_tec_imputer = None
using_no_tec_cat = None
if imputer_strategy == "simpleimputer":
numeric_cols = [col for col in X_train.columns if X_train[col].dtype in [np.int64, np.float64]]
cols_with_nan = [col for col in numeric_cols if X_train[col].isna().any()]
categorical_cols = [col for col in X_train.columns if X_train[col].dtype == 'object']
cols_with_nan_categorical = [col for col in categorical_cols if X_train[col].isna().any()]
logger.info(f": {cols_with_nan}")
logger.info(f": {cols_with_nan_categorical}")
if cols_with_nan:
imputer = SimpleImputer()
imputer.fit(X_train[cols_with_nan])
X_train[cols_with_nan] = imputer.transform(X_train[cols_with_nan])
X_test[cols_with_nan] = imputer.transform(X_test[cols_with_nan])
logger.info("")
else:
using_no_tec_imputer= "No using Simple Imputer"
if categorical_cols:
imputer_categorical = SimpleImputer(strategy='constant', fill_value='missing')
imputer_categorical.fit(X_train[categorical_cols])
X_train[categorical_cols] = imputer_categorical.transform(X_train[categorical_cols])
X_test[categorical_cols] = imputer_categorical.transform(X_test[categorical_cols])
logger.info(f"Imputação de NaNs nas colunas categóricas concluída: {X_train.isna().any()}")
else:
using_no_tec_imputer= "No using Simple Imputer"
# Codificação
if categorical_strategy == "onehot":
categorical_cols = [i for i in range(X_train.shape[1]) if X_train.iloc[:, i].dtype == 'object']
if categorical_cols:
encoder = OneHotEncoder()
X_train_categorical = encoder.fit_transform(X_train.iloc[:, categorical_cols])
X_train_dense = X_train_categorical.toarray()
X_test_categorical = encoder.transform(X_test.iloc[:, categorical_cols])
X_test_dense = X_test_categorical.toarray()
X_train = np.hstack((X_train_dense, X_train.drop(X_train.columns[categorical_cols], axis=1).to_numpy()))
X_test = np.hstack((X_test_dense, X_test.drop(X_test.columns[categorical_cols], axis=1).to_numpy()))
logger.info("")
else:
using_no_tec_cat= "No using One Hot"
elif categorical_strategy == "ordinalencoder":
for i in range(X_train.shape[1]):
if X_train.iloc[:, i].dtype == 'object':
encoder = OrdinalEncoder()
X_train.iloc[:, i] = encoder.fit_transform(X_train.iloc[:, [i]])
X_test.iloc[:, i] = encoder.transform(X_test.iloc[:, [i]])
logger.info("")
else:
using_no_tec_cat = "No using Ordinal Hot"
if scaler == "standard":
scaler_obj = StandardScaler()
elif scaler == "minmax":
scaler_obj = MinMaxScaler()
elif scaler == "robust":
scaler_obj = RobustScaler()
elif scaler == "normalizer":
scaler_obj = Normalizer()
elif scaler == "power":
scaler_obj = PowerTransformer()
elif scaler == "quantile":
scaler_obj = QuantileTransformer()
else:
scaler_obj = None
if scaler_obj is not None:
X_train = scaler_obj.fit_transform(X_train)
X_test = scaler_obj.transform(X_test)
logger.info(f"{scaler}")
# PCA
if feature_selection == "pca":
pca = PCA(random_state=0)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
logger.info(f"{X_train}")
logger.info(f"{X_test}")
logger.info("")
elif feature_selection == "fastica":
ica = FastICA(random_state=0)
X_train = ica.fit_transform(X_train)
X_test = ica.transform(X_test)
logger.info(f"{X_train}")
logger.info(f"{X_test}")
logger.info("")
elif feature_selection == "truncated_svd":
svd = TruncatedSVD(random_state=0)
X_train = svd.fit_transform(X_train)
X_test = svd.transform(X_test)
logger.info(f"TruncatedSVD: {X_train}")
logger.info(f"TruncatedSVD: {X_test}")
logger.info("")
elif feature_selection == "select_percentile":
selector = SelectPercentile()
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
logger.info(f"SelectPercentile: {X_train}")
logger.info(f"SelectPercentile: {X_test}")
logger.info("")
elif feature_selection == "generic_univariate":
selector = GenericUnivariateSelect()
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
logger.info(f" GenericUnivariateSelect: {X_train}")
logger.info(f"GenericUnivariateSelect: {X_test}")
logger.info(".")
elif feature_selection == "polynomial_features":
poly = PolynomialFeatures()
X_train = poly.fit_transform(X_train)
X_test = poly.transform(X_test)
logger.info(f"PolynomialFeatures: {X_train}")
logger.info(f"PolynomialFeatures: {X_test}")
logger.info("")
elif feature_selection == "nystroem":
nystroem = Nystroem(random_state=0)
X_train = nystroem.fit_transform(X_train)
X_test = nystroem.transform(X_test)
logger.info(f"Nystroem: {X_train}")
logger.info(f"Nystroem: {X_test}")
logger.info("")
elif feature_selection == "rbf_sampler":
rbf_sampler = RBFSampler(random_state=0)
X_train = rbf_sampler.fit_transform(X_train)
X_test = rbf_sampler.transform(X_test)
logger.info(f" RBFSampler: {X_train}")
logger.info(f"RBFSampler: {X_test}")
logger.info("")
elif feature_selection == "random_trees_embedding":
rtb = RandomTreesEmbedding(random_state=0)
X_train = rtb.fit_transform(X_train)
X_test = rtb.transform(X_test)
logger.info(f"RandomTreesEmbedding: {X_train}")
logger.info(f"RandomTreesEmbedding: {X_test}")
logger.info("RandomTreesEmbedding.")
elif feature_selection == "feature_agglomeration":
agglomerator = FeatureAgglomeration()
X_train = agglomerator.fit_transform(X_train)
X_test = agglomerator.transform(X_test)
logger.info(f"FeatureAgglomeration: {X_train}")
logger.info(f"FeatureAgglomeration: {X_test}")
logger.info("FeatureAgglomeration.")
elif feature_selection == "extra_tree":
model = ExtraTreesClassifier(random_state=0)
model.fit(X_train, y_train)
selector = SelectFromModel(model)
X_train = selector.transform(X_train)
X_test = selector.transform(X_test)
logger.info(f"ExtraTreesClassifier: {X_train}")
logger.info(f"ExtraTreesClassifier: {X_test}")
logger.info("")
elif feature_selection == "linear_svc":
model = LinearSVC(random_state=0)
model.fit(X_train, y_train)
selector = SelectFromModel(model)
X_train = selector.transform(X_train)
X_test = selector.transform(X_test)
logger.info(f"LinearSVC: {X_train}")
logger.info(f"LinearSVC: {X_test}")
logger.info("")
elif feature_selection == "kernel_pca":
kernel_pca = KernelPCA(random_state=0)
X_train = kernel_pca.fit_transform(X_train)
X_test = kernel_pca.transform(X_test)
logger.info(f"KernelPCA: {X_train}")
logger.info(f"KernelPCA: {X_test}")
logger.info("")
return X_train, X_test, using_no_tec_imputer, using_no_tec_cat
def process_dataset(file_path):
ds = pd.read_csv(file_path)
dataset_name = os.path.basename(file_path).replace('.csv', '')
X = ds.iloc[:, :-1]
y = ds.iloc[:, -1].values
kf = KFold(n_splits=5, shuffle=True, random_state=42)
results = []
cont = 0
training_time = 0
testing_time = 0
for combination in combinations:
for fold, (train_index, test_index) in enumerate(kf.split(X)):
try:
cont += 1
imputer, categorical_strategy, scaler, feature_selection, classifier = combination
print(f'Tentando combinação {cont} - Imputer: {imputer}, Categorização: {categorical_strategy}, Seleção de Feature: {feature_selection}, Scaler: {scaler}, Modelo: {classifier}')
nome_combinacao = f"{imputer}_{categorical_strategy}_{scaler}_{feature_selection}_{classifier}"
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y[train_index], y[test_index]
X_train_processed, X_test_processed, using_no_tec_imputer, using_no_tec_cat = preprocess(X_train, X_test, y_train, imputer, categorical_strategy, scaler, feature_selection)
print(X_train_processed.shape)
print(X_test_processed.shape)
logger.info(f"{X_train_processed}")
logger.info(f"{X_test_processed}")
start_time = time.time()
classifier.fit(X_train_processed, y_train)
training_time = time.time() - start_time
start_time = time.time()
y_pred = classifier.predict(X_test_processed)
testing_time = time.time() - start_time
acc = accuracy_score(y_test, y_pred)
results.append({'Dataset': dataset_name,
'Imputer Strategy': imputer,
'Categorical Strategy': categorical_strategy,
'Feature Selection': feature_selection,
'Scaler': scaler,
'Classifier': classifier,
'Fold': fold,
'Fold Accuracy': acc,
'Error': None,
'Using_imputer': using_no_tec_imputer,
'Using_cat': using_no_tec_cat,
'Training Time': training_time,
'Testing Time': testing_time})
logger.info(f'{cont} - Model: {classifier} {acc}')
predictions_df = pd.DataFrame({'True': y_test, 'Predicted': y_pred})
output_dir = 'datasets_results_8g'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
dataset_results_dir = os.path.join(output_dir, dataset_name)
os.makedirs(dataset_results_dir, exist_ok=True)
predictions_file = os.path.join(dataset_results_dir, f'predictions_fold_dataset_{dataset_name}_combination_{nome_combinacao}_fold_{fold}.csv')
predictions_df.to_csv(predictions_file, index=False)
except Exception as e:
error_msg = (f"Error{cont} - "
f"Imputer: {imputer}, Categorical: {categorical_strategy}, Feature Selection: {feature_selection}, "
f"Scaler: {scaler}, Fold: {fold} - Exception: {e}")
logger.error(error_msg)
results.append({'Dataset': dataset_name,
'Imputer Strategy': imputer,
'Categorical Strategy': categorical_strategy,
'Feature Selection': feature_selection,
'Scaler': scaler,
'Classifier': classifier,
'Fold': fold,
'Fold Accuracy': None,
'Error': error_msg,
'Using_imputer': using_no_tec_imputer,
'Using_cat': using_no_tec_cat,
'Training Time': training_time,
'Testing Time': testing_time})
results_df = pd.DataFrame(results)
output_dir = 'datasets_results_8g'
os.makedirs(output_dir, exist_ok=True)
dataset_results_dir = os.path.join(output_dir, dataset_name)
os.makedirs(dataset_results_dir, exist_ok=True)
output_file = os.path.join(dataset_results_dir, f'{dataset_name}_results_{classificador}.csv')
results_df.to_csv(output_file, index=False)
logger.info(f'Results {output_file}')
imputation_strategy = [None, 'simpleimputer']
categorical_strategies = [None, 'onehot','ordinalencoder']
scalers = [None, 'standard', "minmax","robust","normalizer", "power","quantile"]
feature_selections = [None, 'pca','fastica','truncated_svd',
'select_percentile','generic_univariate','polynomial_features',
'nystroem','rbf_sampler','random_trees_embedding','feature_agglomeration',
'extra_tree','linear_svc', 'kernel_pca']
'''classifiers = [
RandomForestClassifier(),
AdaBoostClassifier(),
BernoulliNB(),
DecisionTreeClassifier(),
ExtraTreesClassifier(),
GaussianNB(),
HistGradientBoostingClassifier(),
KNeighborsClassifier(),
LinearDiscriminantAnalysis(),
LinearSVC(),
SVC(),
MLPClassifier(),
MultinomialNB(),
PassiveAggressiveClassifier(),
QuadraticDiscriminantAnalysis(),
SGDClassifier()
] '''
combinations = []
for imputer in imputation_strategy:
for categorical in categorical_strategies:
for scaler in scalers:
for feature in feature_selections:
#for classificador in classifiers:
combinations.append((imputer, categorical, scaler, feature, classificador))
process_dataset(file_path)