-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
316 lines (242 loc) · 11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
from sklearn.metrics import roc_auc_score, confusion_matrix
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
class RespiratorySoundDataset(Dataset):
def __init__(self, X, y):
super().__init__()
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
def set_seeds(seed=999):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.use_deterministic_algorithms(True)
def load_data(dataset, batch_size):
saved_data = torch.load(dataset)
X_train, X_val, X_test, y_train, y_val, y_test = saved_data['X_train'], saved_data['X_val'], saved_data['X_test'], saved_data['y_train'], saved_data['y_val'], saved_data['y_test']
train_set = RespiratorySoundDataset(X_train, y_train)
val_set = RespiratorySoundDataset(X_val, y_val)
test_set = RespiratorySoundDataset(X_test, y_test)
train_loader = DataLoader(train_set, batch_size=batch_size)
val_loader = DataLoader(val_set, batch_size=batch_size)
test_loader = DataLoader(test_set, batch_size=batch_size)
return train_loader, val_loader, test_loader
def get_optimal_threshold(losses, labels):
accuracies = []
for threshold in losses:
y_pred = losses > threshold
tpr = np.sum((y_pred == 1) & (labels == 1)) / np.sum(labels == 1)
tnr = np.sum((y_pred == 0) & (labels == 0)) / np.sum(labels == 0)
accuracy = 0.5 * (tpr + tnr)
accuracies.append(accuracy)
optimal_threshold = losses[np.argmax(accuracies)]
return optimal_threshold
def train_epoch(model, optimizer, dataloader, args):
criterion = nn.GaussianNLLLoss()
train_loss = 0
model.train()
for batch_idx, batch_data in enumerate(dataloader):
mels, _ = batch_data
mels = mels.to(args.device)
# Split the mels into 5-frame snippets
# snippets = [mels[:, :, i:i+5] for i in range(0, mels.size(2) - 5 + 1, 5)]
snippets = [mels[:, :, i:i+5] for i in range(mels.size(2) - 5 + 1)]
# Concatenate snippets along batch dimension
snippets = torch.cat(snippets, 0)
# Flatten snippets for input in linear nn
snippets = snippets.reshape(-1, 13 * 5)
# Perform order/connectivity agnostic training by resampling the masks
outputs = torch.zeros(snippets.shape[0], snippets.shape[1] * 2, device=args.device)
for s in range(args.samples):
if batch_idx % args.resample_every == 0:
model.update_masks()
outputs += model(snippets)
outputs /= args.samples
# Reshape outputs to mu and logvar
outputs = outputs.view(-1, 13, 5, 2)
mu, logvar = outputs[..., 0], outputs[..., 1]
# Reshape snippets back to original shape
snippets = snippets.view(-1, 13, 5)
loss = criterion(mu, snippets, logvar.exp())
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss = train_loss / len(dataloader)
return train_loss
def eval_epoch(model, scheduler, dataloader, args):
criterion = nn.GaussianNLLLoss()
val_loss = 0
model.eval()
with torch.no_grad():
for batch_data in dataloader:
mels, _ = batch_data
mels = mels.to(args.device)
# Split the mels into 5-frame snippets
# snippets = [mels[:, :, i:i+5] for i in range(0, mels.size(2) - 5 + 1, 5)]
snippets = [mels[:, :, i:i+5] for i in range(mels.size(2) - 5 + 1)]
# Concatenate snippets along batch dimension
snippets = torch.cat(snippets, 0)
# Flatten snippets for input in linear nn
snippets = snippets.reshape(-1, 13 * 5)
# Perform order/connectivity agnostic eval by resampling the masks
outputs = torch.zeros(snippets.shape[0], snippets.shape[1] * 2, device=args.device)
for s in range(args.samples):
# Update model at each step
model.update_masks()
outputs += model(snippets)
outputs /= args.samples
# Reshape outputs to mu and logvar
outputs = outputs.view(-1, 13, 5, 2)
mu, logvar = outputs[..., 0], outputs[..., 1]
# Reshape snippets back to original shape
snippets = snippets.view(-1, 13, 5)
loss = criterion(mu, snippets, logvar.exp())
val_loss += loss.item()
val_loss = val_loss / len(dataloader)
scheduler.step(val_loss)
return val_loss
def test_model(model, val_dataloader, test_dataloader, state_dict, args):
model.load_state_dict(state_dict)
model.eval()
criterion = nn.GaussianNLLLoss(reduction='none')
val_scores = []
val_labels = []
test_scores = []
test_labels = []
with torch.no_grad():
for batch_data in val_dataloader:
mels, y = batch_data
mels = mels.to(args.device)
y = y > 0
# Split the mels into 5-frame snippets
# snippets = [mels[:, :, i:i+5] for i in range(0, mels.size(2) - 5 + 1, 5)]
snippets = [mels[:, :, i:i+5] for i in range(mels.size(2) - 5 + 1)]
batch_loss = torch.zeros([mels.shape[0]])
for snippet in snippets:
# Flatten snippets for input in linear nn
snippet = snippet.reshape(snippet.shape[0], -1)
# Perform order/connectivity agnostic eval by resampling the masks
outputs = torch.zeros(snippet.shape[0], snippet.shape[1] * 2, device=args.device)
for s in range(args.samples):
# Update model at each step
model.update_masks()
outputs += model(snippet)
outputs /= args.samples
# Reshape outputs to mu and logvar
outputs = outputs.view(-1, 13, 5, 2)
mu, logvar = outputs[..., 0], outputs[..., 1]
# Reshape snippets back to original shape
snippet = snippet.view(-1, 13, 5)
loss = criterion(mu, snippet, logvar.exp()).sum((1, 2))
batch_loss += loss.cpu()
batch_loss /= len(snippets)
val_scores.extend(batch_loss)
val_labels.extend(y)
for batch_data in test_dataloader:
mels, y = batch_data
mels = mels.to(args.device)
y = y > 0
# Split the mels into 5-frame snippets
# snippets = [mels[:, :, i:i+5] for i in range(0, mels.size(2) - 5 + 1, 5)]
snippets = [mels[:, :, i:i+5] for i in range(mels.size(2) - 5 + 1)]
batch_loss = torch.zeros([mels.shape[0]])
for snippet in snippets:
# Flatten snippets for input in linear nn
snippet = snippet.reshape(snippet.shape[0], -1)
# Perform order/connectivity agnostic eval by resampling the masks
outputs = torch.zeros(snippet.shape[0], snippet.shape[1] * 2, device=args.device)
for s in range(args.samples):
# Update model at each step
model.update_masks()
outputs += model(snippet)
outputs /= args.samples
# Reshape outputs to mu and logvar
outputs = outputs.view(-1, 13, 5, 2)
mu, logvar = outputs[..., 0], outputs[..., 1]
# Reshape snippets back to original shape
snippet = snippet.view(-1, 13, 5)
loss = criterion(mu, snippet, logvar.exp()).sum((1, 2))
batch_loss += loss.cpu()
batch_loss /= len(snippets)
test_scores.extend(batch_loss)
test_labels.extend(y)
val_scores = np.array(val_scores)
val_labels = np.array(val_labels)
test_scores = np.array(test_scores)
test_labels = np.array(test_labels)
threshold = get_optimal_threshold(val_scores, val_labels)
predictions = (test_scores > threshold)
roc_auc = roc_auc_score(test_labels, test_scores)
tn, fp, fn, tp = confusion_matrix(test_labels, predictions).ravel()
tpr = tp / (tp + fn)
tnr = tn / (tn + fp)
print("tn, fp, fn, tp")
print(tn, fp, fn, tp)
balanced_accuracy = 0.5 * (tpr + tnr)
return roc_auc, balanced_accuracy, tpr, tnr
def test_ensemble(models, val_dataloader, test_dataloader, args):
for model in models:
model.eval()
criterion = nn.GaussianNLLLoss(reduction='none')
val_scores = []
val_labels = []
test_scores = []
test_labels = []
with torch.no_grad():
for dataloader in [val_dataloader, test_dataloader]:
scores = []
labels = []
for batch_data in dataloader:
mels, y = batch_data
mels = mels.to(args.device)
# Split the mels into 5-frame snippets
snippets = [mels[:, :, i:i + 5] for i in range(mels.size(2) - 5 + 1)]
batch_loss = torch.zeros([mels.shape[0]])
for snippet in snippets:
snippet = snippet.reshape(snippet.shape[0], -1)
outputs = torch.zeros(snippet.shape[0], snippet.shape[1] * 2, device=args.device)
for model in models:
model_output = torch.zeros_like(outputs)
for s in range(args.samples):
model.update_masks()
model_output += model(snippet)
model_output /= args.samples
outputs += model_output
outputs /= len(models)
# Reshape outputs to mu and logvar
outputs = outputs.view(-1, 13, 5, 2)
mu, logvar = outputs[..., 0], outputs[..., 1]
# Reshape snippets back to original shape
snippet = snippet.view(-1, 13, 5)
loss = criterion(mu, snippet, logvar.exp()).sum((1, 2))
batch_loss += loss.cpu()
batch_loss /= len(snippets)
scores.extend(batch_loss.tolist())
labels.extend(y.tolist())
if dataloader == val_dataloader:
val_scores = np.array(scores)
val_labels = np.array(labels)
else:
test_scores = np.array(scores)
test_labels = np.array(labels)
# Calculate the optimal threshold
threshold = get_optimal_threshold(val_scores, val_labels)
predictions = (test_scores > threshold)
roc_auc = roc_auc_score(test_labels, test_scores)
tn, fp, fn, tp = confusion_matrix(test_labels, predictions).ravel()
tpr = tp / (tp + fn)
tnr = tn / (tn + fp)
print("tn, fp, fn, tp")
print(tn, fp, fn, tp)
balanced_accuracy = 0.5 * (tpr + tnr)
return roc_auc, balanced_accuracy, tpr, tnr