-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper.tex
77 lines (61 loc) · 2.62 KB
/
paper.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
\documentclass{article}
\usepackage[margin=2.54cm]{geometry}
\usepackage{color}
\usepackage{graphicx}
\usepackage{float}
\usepackage{polynom}
\usepackage{placeins}
\usepackage{longtable}
\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}
\DeclareOldFontCommand{\it}{\normalfont\rmfamily}{\mathrm}
\usepackage{mathtools}
\usepackage{amsmath, bm} % Extra math commands and environments from the AMS
\usepackage{amssymb} % Special symbols from the AMS
\usepackage{amsthm} % Enhanced theorem and proof environments from the AMS
\usepackage{latexsym} % A few extra LaTeX symbols
\usepackage{rxn}
\RequirePackage{booktabs}
\RequirePackage{units_jbr}
\RequirePackage{mpcsymbols}
\usepackage{url}
\providecommand{\email}{}
\renewcommand{\email}[1]{\texttt{#1}}
\usepackage[authoryear,round]{natbib}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{assumption}[theorem]{Assumption}
\newtheorem{hypothesis}[theorem]{Hypothesis}
\newtheorem{property}[theorem]{Property}
%\newcommand{\tL}{\tilde{L}}
\graphicspath{{./}{./figures/}{./figures/paper/}}
\setcounter{topnumber}{2} %% 2
\setcounter{bottomnumber}{1} %% 1
\setcounter{totalnumber}{3} %% 3
\renewcommand{\topfraction}{0.9} %% 0.7
\renewcommand{\bottomfraction}{0.9} %% 0.3
\renewcommand{\textfraction}{0.1} %% 0.2
\renewcommand{\floatpagefraction}{.7} %% 0.5
\title{Structured non-linear hybrid model - ChE 230D}
\author{Prithvi Dake\\
Department of Chemical Engineering\\
University of California, Santa Barbara\\
Santa Barbara, CA 93106}
\date{\today}
\begin{document}
\maketitle
The project is specifically aimed at model indentification applied to chemical plants. Here, we show a simplified `hybrid' modelling approach using neural networks to represent the difficult-to-model parts in the first-principles implementation \citep{kumar:rawlings:2023a}. We end the presentation with quantile regression to make the model selectively learn a certain quantile of the data which can then be used for uncertainty prediction.\\
\newline
\textbf{TOC:}
\section{Incentive for deep learning (specifically hybrid modelling)}
\section{Case study for partial state measurement}
\section{Towards a structured `greybox' model}
\section{Quantile regression for uncertainty prediction}
\bibliographystyle{abbrvnat}
\bibliography{abbreviations,articles,books,unpub,proceedings}
\end{document}