-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpix2pix.py
403 lines (358 loc) · 19.2 KB
/
pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as vtransforms
from typing import Type, Any, Callable, Union, List, Optional
import blocks
from torch.nn import init
import functools
####################
# Utility Functions
####################
def Identity(x):
return x
####################
# Pix2Pix by Isola
####################
class UnetGenerator(nn.Module):
"""
Create a Unet-based generator.
Source: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/f13aab8148bd5f15b9eb47b690496df8dadbab0c/models/networks.py#L436
"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer [nn.BatchNorm2d, nn.InstanceNorm2d]
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
#####################
# Rewritten for better interpretability
#####################
class Pix2Pix_Encoder_Block(nn.Module):
"""
Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632
"""
def __init__(self, _in_channels, _out_channels, _kernel_size=(4,4), _stride=(2,2), _padding=(1,1), _dilation=(1,1), _normType="BatchNorm", use_bias=True):
super().__init__()
self.in_channels = _in_channels
self.out_channels = _out_channels
self.kernel_size = _kernel_size
self.stride = _stride
self.padding = _padding
self.dilation_rate = _dilation
self.normType = _normType
# Downsampling
self.conv2d_1 = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation_rate,
bias=use_bias)
# Norms
if self.normType is not None:
if self.normType == 'BatchNorm':
self.norm = nn.BatchNorm2d(num_features=self.out_channels, affine=True)
if self.normType == 'InstanceNorm':
self.norm = nn.InstanceNorm2d(num_features=self.out_channels, affine=True)
# ReLU
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=False)
def forward(self, x: Tensor) -> Tensor:
out = self.conv2d_1(x)
if self.normType is not None:
out = self.norm(out)
out = self.relu(out)
return out
class Pix2Pix_DecoderBlock(nn.Module):
"""
Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632
"""
def __init__(self, _in_channels, _out_channels, _kernel_size=(4,4), _stride=(2,2), _padding=(1,1), _dilation=(1,1), _normType="BatchNorm", use_bias=True, _dropoutType = "normal", _dropRate=0.5):
super().__init__()
self.in_channels = _in_channels
self.out_channels = _out_channels
self.kernel_size = _kernel_size
self.stride = _stride
self.padding = _padding
self.dilation_rate = _dilation
self.normType = _normType
self.dropoutType = _dropoutType
self.dropRate = _dropRate
self.upsampleConv = nn.ConvTranspose2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation_rate,
bias=use_bias)
# Norms
if self.normType is not None:
if self.normType == 'BatchNorm':
self.norm = nn.BatchNorm2d(num_features=self.out_channels, affine=True)
if self.normType == 'InstanceNorm':
self.norm = nn.InstanceNorm2d(num_features=self.out_channels, affine=True)
# ReLU
self.relu = nn.ReLU()
# Dropout
if self.dropoutType is not None:
if self.dropoutType == "normal":
self.dropout = nn.Dropout(p=self.dropRate, inplace=False)
if self.dropoutType == "ADL":
self.dropout = blocks.ADL(drop_rate=self.dropRate, gamma=0.9)
def forward(self, x: Tensor, skip_tensor: Tensor) -> Tensor:
out = self.upsampleConv(x)
#print("after upsample: " + str(out.shape))
if self.normType is not None:
out = self.norm(out)
if self.dropoutType is not None:
out = self.dropout(out)
out = torch.cat((out, skip_tensor), 1)
#print("after cat: " + str(out.shape))
out = self.relu(out)
return out
class Custom_Written_Generator(nn.Module):
def __init__(self, input_array_shape, _first_out_channels = 64, _normType="BatchNorm", _dropoutType = "normal", _dropRate=0.5, _outputType="Tanh"):
super().__init__()
self.first_out_channels = _first_out_channels
self.input_array_shape = input_array_shape
self.outputType = _outputType
self.normType = _normType
if self.normType == "BatchNorm":
_use_bias = False
if self.normType == "InstanceNorm":
_use_bias = True
# INPUT
self.convInput = nn.Conv2d(in_channels=self.input_array_shape[1], out_channels=self.first_out_channels,
kernel_size=4, stride=2, padding=1, dilation=1,
bias=_use_bias)
self.lrelu = nn.LeakyReLU(0.2)
# ENCODER
self.enc1 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels, _out_channels=self.first_out_channels*2, _normType=self.normType, use_bias=_use_bias)
self.enc2 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*2, _out_channels=self.first_out_channels*4, _normType=self.normType, use_bias=_use_bias)
self.enc3 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*4, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.enc4 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.enc5 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.enc6 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.enc7 = Pix2Pix_Encoder_Block( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
input_spatial = (int(self.input_array_shape[2]*(0.5**7)), int(self.input_array_shape[3]*(0.5**7)) )
# Bridge
#same_padding = (input_spatial[0]//2 - 1 + 4//2 , input_spatial[1]//2 - 1 + 4//2)
self.bridgeConv = nn.Conv2d(in_channels=self.first_out_channels*8,
out_channels=self.first_out_channels*8,
kernel_size=4,
stride=2,
padding=1, #same_padding,
dilation=1,
bias=_use_bias)
self.bridgeRelu = nn.ReLU()
# Decoder.
self.dec7 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.dec6 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*16, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.dec5 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*16, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias)
self.dec4 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*16, _out_channels=self.first_out_channels*8, _normType=self.normType, use_bias=_use_bias, _dropoutType=None)
self.dec3 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*16, _out_channels=self.first_out_channels*4, _normType=self.normType, use_bias=_use_bias, _dropoutType=None)
self.dec2 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*8, _out_channels=self.first_out_channels*2, _normType=self.normType, use_bias=_use_bias, _dropoutType=None)
self.dec1 = Pix2Pix_DecoderBlock( _in_channels=self.first_out_channels*4, _out_channels=self.first_out_channels, _normType=self.normType, use_bias=_use_bias, _dropoutType=None)
# Output
input_spatial = input_array_shape[2:4]
#same_padding = (input_spatial[0]//2 - 1 + 4//2 , input_spatial[1]//2 - 1 + 4//2 )
self.output_conv = nn.ConvTranspose2d(
in_channels=self.first_out_channels*2,
out_channels=self.input_array_shape[1],
kernel_size=(4,4),
stride=(2,2),
padding=(1,1),
dilation=(1,1),
bias=True)
if self.outputType == "Tanh":
self.outImage = nn.Tanh()
if self.outputType == "Sigmoid":
self.outImage = nn.Sigmoid()
def forward(self, x: Tensor) -> Tensor:
# Encode
out = self.convInput(x)
skip1 = self.lrelu(out)
skip2 = self.enc1(skip1)
skip3 = self.enc2(skip2)
skip4 = self.enc3(skip3)
skip5 = self.enc4(skip4)
skip6 = self.enc5(skip5)
skip7 = self.enc6(skip6)
# Bridge
out = self.bridgeConv(skip7)
out = self.bridgeRelu(out)
# Decode
out = self.dec7(out, skip7)
out = self.dec6(out, skip6)
out = self.dec5(out, skip5)
out = self.dec4(out, skip4)
out = self.dec3(out, skip3)
out = self.dec2(out, skip2)
out = self.dec1(out, skip1)
# Output
out = self.output_conv(out)
out = self.outImage(out)
return out
""""""
class Discriminator_Pix2Pix(nn.Module):
"""
The 70x70 PatchGAN from Isola et al.
Implementation guided by code from:
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/f13aab8148bd5f15b9eb47b690496df8dadbab0c/models/networks.py#L538
LOGITS output -- use BCEWithLogitsLoss
Paper:
Isola, P., Zhu, J., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632
"""
def __init__(self, _input_array_size, _first_out_channels=64, _normType="BatchNorm", spectral_normalize=False):
super().__init__()
self.input_array_size = _input_array_size
self.first_out_channels = _first_out_channels
self.normType = _normType
if self.normType == "BatchNorm":
normlayer = nn.BatchNorm2d
use_bias = False
if self.normType == "InstanceNorm":
normlayer = nn.InstanceNorm2d
use_bias = True
if spectral_normalize:
self.normalization_function = nn.utils.spectral_norm
else:
self.normalization_function = Identity
self.conv1 = self.normalization_function(nn.Conv2d(in_channels=self.input_array_size[1],
out_channels=self.first_out_channels,
kernel_size=(4,4),
stride=(2,2),
padding=(1,1), #same_padding,
dilation=(1,1),
bias=use_bias))
_out_channels2 = self.first_out_channels*2
self.conv2 = self.normalization_function(nn.Conv2d(in_channels=self.first_out_channels,
out_channels=_out_channels2,
kernel_size=(4,4),
stride=(2,2),
padding=(1,1), #same_padding,
dilation=(1,1),
bias=use_bias))
self.BN2 = normlayer(num_features=_out_channels2, affine=True)
_out_channels3 = self.first_out_channels*(2**2)
self.conv3 = self.normalization_function(nn.Conv2d(in_channels=_out_channels2,
out_channels=_out_channels3,
kernel_size=(4,4),
stride=(2,2),
padding=(1,1), #same_padding,
dilation=(1,1),
bias=use_bias))
self.BN3 = normlayer(num_features=_out_channels3, affine=True)
_out_channels4 = self.first_out_channels*(2**3)
self.conv4 = self.normalization_function(nn.Conv2d(in_channels=_out_channels3,
out_channels=_out_channels4,
kernel_size=(4,4),
stride=1,
padding=(1,1), #same_padding,
dilation=(1,1),
bias=use_bias))
self.BN4 = normlayer(num_features=_out_channels4, affine=True)
# Final
# This is from the pytorch implementation
# https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/f13aab8148bd5f15b9eb47b690496df8dadbab0c/models/networks.py#L538
self.conv_final = self.normalization_function(nn.Conv2d(in_channels=_out_channels4, out_channels=1,
kernel_size=4, stride=1, padding=1, bias=True))
self.lrelu = nn.LeakyReLU(0.2, inplace=False)
def forward(self, x: Tensor) -> Tensor:
out = self.conv1(x)
out = self.lrelu(out)
out = self.conv2(out)
out = self.BN2(out)
out = self.lrelu(out)
out = self.conv3(out)
out = self.BN3(out)
out = self.lrelu(out)
out = self.conv4(out)
out = self.BN4(out)
out = self.lrelu(out)
out = self.conv_final(out)
return out