-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathNAKANJ.cs
191 lines (156 loc) · 6.25 KB
/
NAKANJ.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
using System;
using System.Collections.Generic;
// https://www.spoj.com/problems/NAKANJ/ #bfs
// Finds the minimum number of knight moves from one chess square to another.
public static class NAKANJ
{
private static readonly SimpleGraph _knightMoveGraph;
private static readonly Tuple<int, int>[] _knightMoveTransformations = new[]
{
Tuple.Create(-1, -2), Tuple.Create(-2, -1), /* top left of diagram */
Tuple.Create(-2, 1), Tuple.Create(-1, 2), /* top right of diagram */
Tuple.Create(1, 2), Tuple.Create(2, 1), /* bottom right of diagram */
Tuple.Create(2, -1), Tuple.Create(1, -2) /* bottom left of diagram */
};
static NAKANJ()
{
_knightMoveGraph = new SimpleGraph(vertexCount: 64);
// The problem's chessboard has rows from 8 to 1 and columns from a to h,
// starting in the upper left corner. This one will have rows from 0 to 7
// and columns from 0 to 7, starting in the upper left hand corner.
for (int r = 0; r < 8; ++r)
{
for (int c = 0; c < 8; ++c)
{
int thisVertexID = GetVertexID(r, c);
foreach (var knightMoveTransformation in _knightMoveTransformations)
{
int rowTransformation = knightMoveTransformation.Item1;
int columnTransformation = knightMoveTransformation.Item2;
int movedToVertexID;
if (TryGetVertexID(r + rowTransformation, c + columnTransformation,
out movedToVertexID))
{
_knightMoveGraph.AddEdge(thisVertexID, movedToVertexID);
}
}
}
}
}
private static int GetVertexID(int r, int c)
=> r * 8 + c;
private static bool TryGetVertexID(int r, int c, out int vertexID)
{
vertexID = GetVertexID(r, c);
return r >= 0 && r < 8 && c >= 0 && c < 8;
}
private static int GetVertexID(string square)
{
int r = '8' - square[1];
int c = square[0] - 'a';
return GetVertexID(r, c);
}
public static int Solve(string startSquare, string endSquare)
=> _knightMoveGraph.GetShortestPathLength(
startVertexID: GetVertexID(startSquare),
endVertexID: GetVertexID(endSquare));
}
// Undirected, unweighted graph with no loops or multiple edges. The graph's vertices are stored
// in an array, with the ID of a vertex (from 0 to vertexCount - 1) corresponding to its index.
public sealed class SimpleGraph
{
public SimpleGraph(int vertexCount)
{
var vertices = new Vertex[vertexCount];
for (int id = 0; id < vertexCount; ++id)
{
vertices[id] = new Vertex(this, id);
}
Vertices = vertices;
}
public IReadOnlyList<Vertex> Vertices { get; }
public int VertexCount => Vertices.Count;
public void AddEdge(int firstVertexID, int secondVertexID)
=> AddEdge(Vertices[firstVertexID], Vertices[secondVertexID]);
public void AddEdge(Vertex firstVertex, Vertex secondVertex)
{
firstVertex.AddNeighbor(secondVertex);
secondVertex.AddNeighbor(firstVertex);
}
public int GetShortestPathLength(int startVertexID, int endVertexID)
=> GetShortestPathLength(Vertices[startVertexID], Vertices[endVertexID]);
public int GetShortestPathLength(Vertex startVertex, Vertex endVertex)
{
if (startVertex == endVertex) return 0;
bool[] discoveredVertexIDs = new bool[VertexCount];
var verticesToVisit = new Queue<Vertex>();
discoveredVertexIDs[startVertex.ID] = true;
verticesToVisit.Enqueue(startVertex);
int distance = 1;
// We visit vertices in waves, where all vertices in the same wave are the same distance
// from the start vertex, which BFS makes convenient. This allows us to avoid storing
// distances to the start vertex at the level of individual vertices. To save work we
// don't check the wave vertices for endVertex equality, but rather their neighbors.
// So that's why the distance starts off as one rather than zero.
while (verticesToVisit.Count > 0)
{
int waveSize = verticesToVisit.Count;
for (int i = 0; i < waveSize; ++i)
{
var vertex = verticesToVisit.Dequeue();
foreach (var neighbor in vertex.Neighbors)
{
if (!discoveredVertexIDs[neighbor.ID])
{
if (neighbor == endVertex)
return distance;
discoveredVertexIDs[neighbor.ID] = true;
verticesToVisit.Enqueue(neighbor);
}
}
}
++distance;
}
return -1;
}
public sealed class Vertex : IEquatable<Vertex>
{
private readonly SimpleGraph _graph;
private readonly HashSet<Vertex> _neighbors = new HashSet<Vertex>();
internal Vertex(SimpleGraph graph, int ID)
{
_graph = graph;
this.ID = ID;
}
public int ID { get; }
public IReadOnlyCollection<Vertex> Neighbors => _neighbors;
public int Degree => _neighbors.Count;
internal void AddNeighbor(int neighborID)
=> _neighbors.Add(_graph.Vertices[neighborID]);
internal void AddNeighbor(Vertex neighbor)
=> _neighbors.Add(neighbor);
public bool HasNeighbor(int neighborID)
=> _neighbors.Contains(_graph.Vertices[neighborID]);
public bool HasNeighbor(Vertex neighbor)
=> _neighbors.Contains(neighbor);
public override bool Equals(object obj)
=> (obj as Vertex)?.ID == ID;
public bool Equals(Vertex other)
=> other.ID == ID;
public override int GetHashCode()
=> ID;
}
}
public static class Program
{
private static void Main()
{
int remainingTestCases = int.Parse(Console.ReadLine());
while (remainingTestCases-- > 0)
{
string[] line = Console.ReadLine().Split();
Console.WriteLine(
NAKANJ.Solve(line[0], line[1]));
}
}
}