This repository was archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheos.py
243 lines (182 loc) · 7.94 KB
/
eos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import keras
import re
import numpy as np
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import LSTM, GRU, Bidirectional
from keras.layers import Conv1D, MaxPooling1D, GlobalAveragePooling1D, GlobalMaxPooling1D
from keras.layers.noise import AlphaDropout
from keras.callbacks import ModelCheckpoint
from keras.utils import plot_model
from keras.layers.advanced_activations import LeakyReLU
from utils import Utils
class EOS(object):
def __init__(self):
self.util = Utils()
def train(self, training_file,
architecture="cnn",
window_size=4,
epochs=5,
batch_size=32,
dropout=0.25,
min_freq=10000,
max_features=20000,
embedding_size=128,
lstm_gru_size=256,
mlp_dense=6,
mlp_dense_units=16,
kernel_size=5,
filters=64,
pool_size=2,
hidden_dims=250,
strides=1,
model_filename='best_model.hdf5',
vocab_filename='vocab.dump'):
with open(training_file, mode='r', encoding='utf-8') as f:
training_corpus = f.read()
data_set_char = self.util.build_data_set_char(
training_corpus, window_size)
char_2_id_dict = self.util.build_char_2_id_dict(
data_set_char, min_freq)
data_set = self.util.build_data_set(data_set_char, char_2_id_dict,
window_size)
x_train = np.array([i[1] for i in data_set])
y_train = np.array([i[0] for i in data_set])
maxlen = 2 * window_size + 1
model = Sequential()
if architecture == "cnn":
model.add(Embedding(max_features,
embedding_size,
input_length=maxlen))
model.add(Dropout(dropout))
# we add a Convolution1D, which will learn filters
# word group filters of size filter_length:
model.add(Conv1D(filters,
kernel_size,
padding='valid',
activation='relu',
strides=1))
# we use max pooling:
model.add(GlobalMaxPooling1D())
# We add a vanilla hidden layer:
model.add(Dense(hidden_dims))
model.add(Dropout(dropout))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a
# sigmoid:
model.add(Dense(1))
model.add(Activation('sigmoid'))
elif architecture == "lstm":
model.add(Embedding(max_features,
embedding_size))
model.add(
LSTM(
lstm_gru_size,
dropout=dropout,
recurrent_dropout=dropout))
model.add(Dense(1, activation='sigmoid'))
elif architecture == "bi-lstm":
model.add(Embedding(max_features,
embedding_size))
model.add(
Bidirectional(
LSTM(
lstm_gru_size,
dropout=dropout,
recurrent_dropout=dropout)))
model.add(Dense(1, activation='sigmoid'))
elif architecture == "gru":
model.add(Embedding(max_features,
embedding_size))
model.add(GRU(lstm_gru_size, dropout=dropout,
recurrent_dropout=dropout))
model.add(Dense(1, activation='sigmoid'))
elif architecture == "bi-gru":
model.add(Embedding(max_features,
embedding_size))
model.add(Bidirectional(
GRU(lstm_gru_size, dropout=dropout, recurrent_dropout=dropout)))
model.add(Dense(1, activation='sigmoid'))
elif architecture == "mlp":
model.add(Dense(mlp_dense_units, input_shape=(maxlen,),
kernel_initializer='lecun_normal'))
model.add(Activation('selu'))
model.add(AlphaDropout(dropout))
for i in range(mlp_dense - 1):
model.add(
Dense(
mlp_dense_units,
kernel_initializer='lecun_normal'))
model.add(Activation('selu'))
model.add(AlphaDropout(dropout))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.summary()
plot_model(model, to_file='model.png')
mcp = ModelCheckpoint(model_filename,
monitor="acc",
save_best_only=True, save_weights_only=False,
mode='max')
model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,
callbacks=[mcp])
self.util.save_vocab(char_2_id_dict, vocab_filename)
def test(self, test_file,
model_filename='best_model.hdf5',
vocab_filename='vocab.dump',
window_size=4,
batch_size=32):
with open(test_file, mode='r', encoding='utf-8') as f:
test_corpus = f.read()
char_2_id_dict = self.util.load_vocab(vocab_filename)
data_set_char = self.util.build_data_set_char(test_corpus, window_size)
data_set = self.util.build_data_set(data_set_char, char_2_id_dict,
window_size)
x_test = np.array([i[1] for i in data_set])
y_test = np.array([i[0] for i in data_set])
model = load_model(model_filename)
scores = model.evaluate(x_test, y_test, batch_size=batch_size)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
def tag(self, input_file,
model_filename='best_model.hdf5',
vocab_filename='vocab.dump',
window_size=4,
batch_size=32,
eos_marker="</eos>"):
char_2_id_dict = self.util.load_vocab(vocab_filename)
model = load_model(model_filename)
with open(input_file, mode='r', encoding='utf-8') as f:
t = f.read()
potential_eos_list = self.util.build_potential_eos_list(t, window_size)
eos_counter = 0
for potential_eos in potential_eos_list:
start, char_sequence = potential_eos
data_set = self.util.build_data_set([(-1.0, char_sequence)],
char_2_id_dict,
window_size)
if len(data_set) > 0:
label, feature_vector = data_set[0]
predicted = model.predict(
feature_vector.reshape(
1,
2 * window_size + 1),
batch_size=batch_size,
verbose=0)
if predicted[0][0] >= 0.5:
t = t[:(eos_counter * len(eos_marker)) + start + 1] + \
eos_marker + t[(eos_counter * len(eos_marker)) + start + 1:]
eos_counter += 1
print(t[:] + eos_marker)
def extract(self, input_file,
window_size=4,
min_freq=10000):
with open(input_file, mode='r', encoding='utf-8') as f:
input_corpus = f.read()
data_set_char = self.util.build_data_set_char(
input_corpus, window_size)
print("\n".join([str(int(entry[0])) + "\t" + "".join([str(id_)
for id_ in entry[1]]) for entry in data_set_char]))