-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaval2007.py
50 lines (41 loc) · 1.45 KB
/
aval2007.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#%%
import re
import pandas as pd
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
#%%
BASE_URL = "https://www.fct.pt/apoios/unidades/avaliacoes/2007/"
#%%
def parse_resultados():
get = requests.get(BASE_URL + "resultados.phtml.pt")
soup = BeautifulSoup(get.content, 'lxml')
areas = {area.text.strip(): BASE_URL + area['href'] for area in soup.select('div#relatorio ul li ul li a')}
return areas
def parse_areas(areas_dict: dict):
data = []
for area in tqdm(areas_dict):
for centro in tqdm(parse_area(areas_dict[area], area)):
data.append(centro)
data = pd.DataFrame(data).set_index('codigo_centro')
data.to_csv('fct_aval2007.csv')
def parse_area(area_url: str, area_name: str):
get = requests.get(area_url.replace('areas', 'areas.phtml.pt'))
area = BeautifulSoup(get.content, 'lxml')
for centro in area.select('div#relatorio ul li'):
yield parse_centro(centro)
def parse_centro(centro):
centro_dict = dict()
centro_dict['nome_centro'] = centro.select_one('h5 a').text
centro_dict['codigo_centro'] = centro.select_one('h5 span').text[1:-1]
keys = ['coord', 'instit', 'website', 'nr_inv', 'nr_phd', 'nr_phd_int', 'nr_grupos', 'aval_2007']
for k, v in zip(keys, centro.select('p em')):
centro_dict[k] = v.text.strip()
return centro_dict
def main():
areas = parse_resultados()
parse_areas(areas)
#%%
if __name__ == '__main__':
main()
# %%