generated from deepcodebase/classification
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
61 lines (44 loc) · 1.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import logging
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
from utils.log import print_config, save_lr_finder
logger = logging.getLogger(__name__)
def init_trainer(cfg):
cfg_trainer = dict(cfg.pl_trainer)
if 'logging' in cfg:
loggers = []
for _, cfg_log in cfg.logging.items():
loggers.append(instantiate(cfg_log))
cfg_trainer['logger'] = loggers
if cfg.callbacks:
callbacks = []
for _, cfg_callback in cfg.callbacks.items():
callbacks.append(instantiate(cfg_callback))
cfg_trainer['callbacks'] = callbacks
if cfg_trainer['accelerator'] == 'ddp' and cfg_trainer['precision'] < 32:
cfg_trainer['plugins'] = DDPPlugin(find_unused_parameters=False)
trainer = pl.Trainer(**cfg_trainer)
return trainer
@hydra.main(config_path='conf', config_name='config')
def main(cfg: DictConfig) -> None:
print_config(cfg)
pl._logger.handlers = []
pl._logger.propagate = True
if cfg.seed is not None:
pl.seed_everything(cfg.seed)
model = instantiate(cfg.pipeline, cfg=cfg, _recursive_=False)
trainer = init_trainer(cfg)
datamodule = instantiate(cfg.dataset)
if cfg.mode == 'find_lr':
lr_finder = trainer.tuner.lr_find(model, datamodule=datamodule)
save_lr_finder(lr_finder)
logger.info(f"Suggestion: {lr_finder.suggestion()}")
else:
trainer.fit(model, datamodule)
if cfg.run_test:
trainer.test(model, datamodule=datamodule)
if __name__ == '__main__':
main()